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Background
• Lung cancer remains the tumor type with the highest mortality rate globally. 
• Whilst therapeutic options, both systemic and targeted are increasing, selecting patients for these 

therapies become a critical factor. 
• The tumor microenvironment (TME) has been recognized as an increasingly important component to 

profile, both phenotypically and functionally, to understand the cellular composition and how cells 
communicate in the TME. 

• Moreover, these profiles can be used in the development of predictive signatures and companion 
diagnostic assays for patient triage.

Methods
• Using our SpaceIQ  platform, we developed a simple prognostic test on key biomarkers predictive of 

the likelihood of patients responding to adjuvant immunotherapies. 
• Briefly, we applied cell segmentation and unbiased cell typing on the spatial proteomics data (28 

patient cores in 44-plex mIF panel with 10 responders and 18 non-responders) yielding 23 different cell 
types. 

• Differential spatial arrangements of cells based on pointwise mutual information between response 
groups resulted in response-specific microdomains. 

• Biomarker profiles from each of the cell types involved in the microdomains served as the basis for a 
de-plexing algorithm in obtaining a low-dimensional proxy representation of the cell types. 

• Finally, a spatial score between the de-plexed representation of cell types and its estimated mean 
biomarker expression were derived as predictive features for response outcome in a simplified 
prognostic model.

Results
• Predictive spatial interactions for response outcome emerged from our analysis involving metabolic 

activity in immune cells, in particular macrophages. 
• Resistant signature defined by spatial interactions between immune cell subpopulations of 

Microdomain 1 and 3 show increased LDHA and decreased CPT1A activity that were predictive for IO 
response with AUC=0.87 (0.86,0.88) and AUC=0.79 (0.79,0.80), respectively.

• Response signature promoting spatial interaction between epithelial/tumor cell population with 
infiltrating macrophages of Microdomain 2 was predictive for IO response with AUC=0.83 (0.82,0.84).

Conclusions
• Through the SpaceIQ  platform, we were able to de-plex a 44-plex IF panel to a few key predictive 

biomarkers involving metabolic and macrophage signatures that yielded good predictive performance 
on immunotherapy response in NSCLC patients. 

• We hypothesize that metabolic reprogramming of glycolysis in macrophages through lowered CPT1A 
stabilization of LDHA may lead to less effective pro-inflammatory response of M1 macrophages 
contributing to the resistance of IO therapy. 

• We also observed evidence that interaction between epithelial/tumor cells with mitigated proliferation 
of GLUT1-active tumor-associated macrophages led to improved response to IO therapy.

Unbiased Cell Typing Extracts Numerically Stable, Spatially Distinct 
and Biologically Interpretable Recursive Cell Types 
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µDs Emerge as Spatial Networks of Immuno-Metabolic Cell Types 

Cellular Heterogeneity Visualized

De-plexed markers involving metabolic and macrophage signatures yield 
good predictive performance in IO response in NSCLC patients
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• Dynamic range of cell mean intensity distribution on 40 
biomarkers colored by marker type that were used for 
unbiased cell typing.

• Recursive hierarchical tree at each level bi-partitioning of 
parent node cell population into children nodes.  The root 
node represents all nonepithelial cells undergoing unbiased 
cell typing. Green nodes denote distinct clusters at a given 
level based on a positive estimated Silhouette score. Red leaf 
nodes denote descendants that have a distinct ancestral node 
beyond the first level split.  Purple leaf nodes denote 
descendants that do not have a distinct ancestral node 
beyond the first level split. 

• Estimated inverse coefficient of variation for each marker for 
each of the cell population clusters from the first level split of 
unbiased cell typing. 

• Responder and non-responder cores showing the cells from 
the first level split.  Cells in gray are the epithelial cells. 
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• Spatial domain network representing microdomain 
families of co-localization among unbiased cell types 
and epithelial cells.  

• Red (blue) edges denote more frequent co-
localization in responder (non-responder) group. 

• Each cell type node shows de-plexed  markers that 
are used to approximate the cell type (up/down 
arrows denote the above/below cell mean intensities 
in the approximated cell type relative to mean 
intensities of overall cell population).  

• Three-way microdomains, among the microdomain 
families, present in the spatial domain network. 
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1-Specificity

LU-Microdomain 1 [AUC=0.869 (95% CI: 0.858-0.880)]

LU-Microdomain 2 [AUC=0.830 (95% CI: 0.819-0.842)]

LU-Microdomain 3 [AUC=0.793 (95% CI: 0.783-0.803)]

LU-12210:LU11111 [AUC=0.821 (95% CI: 0.811-0.830)]

LU-epithelial:LU-22200 [AUC=0.713 (95% CI: 0.702-0.723)]

LU-epithelial:LU-12210 [AUC=0.709 (95% CI: 0.698-0.719)]

LU-11122:LU-12122 [AUC=0.687 (95% CI: 0.676-0.699)]
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Discriminatory Markers for Biological Interpretation of Unbiased 
Recursive Cell Types


