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Background Unbiased Cell Typing Extracts Numerically Stable, Spatially Distinct and Microdomains Emerge as Spatial Networks of Immuno-Metabolic Cell Types
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Notch Signaling (p=0.01), and NK-mediated activity (p=0.06) in nivolumab-treated response.

 Core-based microdomains were enriched for cell differentiation (p<0.01), mitochondrial
metabolism / TCA (p=0.01), and lymphocyte trafficking (p=0.08).
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