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Background
• The emergence of single-cell spatial omics platforms generating high-plex proteomic and 

transcriptomic measurements sets the foundation for accurate downstream biologically 
interpretable analyses. 

• This includes biased and unbiased approaches for cell typing, cell-cell interactions and the 
discovery of microdomains, complex multicellular microenvironments, underlying disease 
progression.

Problem
• There is a lack of a computational framework for optimizing unbiased approaches with 

biological priors for unraveling a deeper understanding of disease mechanisms. 
• This requires innovative integrational methods that assign confidence and robustness to 

data-driven biological hypotheses, e.g., presence of transition cells and other rare cell types, 
emergent microdomains and spatially modulated network biology.

Solution
• We present a Bayesian computational approach, SpaceIQ  [1,2], that not only elucidates 

potential novel hypotheses driving disease mechanisms, but also cross-references existing 
working hypotheses from alternative methods. 

• SpaceIQ is agnostic to imaging platforms with the ability to ingest any combinatorial forms 
of spatial data (e.g., transmitted light, proteomics and transcriptomics).

Results
• To illustrate our approach, we compare the results from SpaceIQ to the interpretative 

analyses presented in He et al. Nat Biotech 2022, a publicly available 960-plex RNA data 
from CosMx platform on NSCLC samples. 

• We aim to provide additional mechanistic insights underlying Stage II/III progression that 
can augment the biological annotations reported. 

• We have identified 16 unbiased cell types with probabilistic representation of a priori 
phenotypes annotated as myeloid, lymphocytes, endothelial, epithelial/tumor, and 
fibroblast. 

• IFI27, SOX4, MALAT1, TYK2, CD74, HLADRB1, and COL3A1 were among the highly-expressed 
discriminatory genes among cell types. 28 significant spatial interactions (p<0.1) were found 
resulting in 7 microdomains. 

• Comparison of microdomains to niche neighborhoods defined in He et al. shows that 
macrophages in the stroma and TLS play a role in tumor progression. 

• Ligand-Receptor analysis on microdomains identified IL-2 signaling, GPCR ligand binding, 
TNF activity, and TGF regulation to be significant cell-cell communication channels in NSCLC 
progression (p<1e-04).

Unbiased Cell Typing Extracts Numerically Stable, Spatially Distinct and 
Biologically Interpretable Recursive Cell Types 

Conclusions
• We demonstrate the generalizability of SpaceIQ Platform by applying it to spatial 

transcriptomics datasets. The applications to mIF and brightfield pathology datasets has been 
showcased previously (ESMO 2024, SITC 2024)

• Our recursive unbiased cell typing revealed 16 cell types based on the top 100 most variable 
cell mean gene expressions. 

• Unbiased cell types were characterized by Bayesian probability assignments on known 
predefined phenotypes and discriminatory genes measured from inverse coefficient variation 
estimates. 

• The inferred microdomains between these unbiased cell types generated the spatial domain 
network that is associated with cancer stage progression. 

• We performed niche mapping and ligand-receptor analysis on selected microdomains to 
further understand the potential biological and molecular basis underlying its association to 
cancer progression. References

[1]Uttam, S, et al Nat. Comm., 2020; [2]Furman SA, Cell. Rep. Met., 2021; 
[3]Spagnolo D et al, JPI, 2016
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Microdomain Families Emerge from Spatial Domain PMI Network
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Bayesian Interpretation of Recursive Cell Types Using 
Pre-Defined Tumor/Immune Phenotype Likelihoods

P(A,B) = ∑ w(d;σ) P(A, B ; d)

PMI(A, B) = log [P(A,  B) / P(A) P(B)]                       

PMI = Pointwise Mutual Information 

..predict biomarker 
expression / identity

Use biomarker expression / 
identity to..

P = Probability

Pointwise Mutual Information (PMI) [3] Maps 
Quantify Spatial Heterogeneity

Ratio of PMI Maps Between 
Stage-II vs Stage-III patients for 
Recursive Cell Types (p < 0.1)
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