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Background

* The emergence of single-cell spatial omics platforms generating high-plex proteomic and
transcriptomic measurements sets the foundation for accurate downstream biologically

interpretable analyses.

 This includes biased and unbiased approaches for cell typing, cell-cell interactions and the
discovery of microdomains, complex multicellular microenvironments, underlying disease

progression.
Problem

 There is a lack of a computational framework for optimizing unbiased approaches with
biological priors for unraveling a deeper understanding of disease mechanisms.

* This requires innovative integrational methods that assign confidence and robustness to
data-driven biological hypotheses, e.g., presence of transition cells and other rare cell types,
emergent microdomains and spatially modulated network biology.

Solution

« We present a Bayesian computational approach, SpacelQ™ [1,2], that not only elucidates
potential novel hypotheses driving disease mechanisms, but also cross-references existing

working hypotheses from alternative methods.

e SpacelQ is agnhostic to imaging platforms with the ability to ingest any combinatorial forms
of spatial data (e.g., transmitted light, proteomics and transcriptomics).
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Results

SpacelQ™: Functional View of Integration
Spatial Proteomics (sP) + Spatial Transcriptomics (sT)

* Toillustrate our approach, we compare the results from SpacelQ to the interpretative
analyses presented in He et al. Nat Biotech 2022, a publicly available 960-plex RNA data

from CosMx platform on NSCLC samples.

 We aim to provide additional mechanistic insights underlying Stage Il/Ill progression that

can augment the biological annotations reported.

 We have identified 16 unbiased cell types with probabilistic representation of a priori
phenotypes annotated as myeloid, lymphocytes, endothelial, epithelial/tumor, and

fibroblast.

* |FI27, SOX4, MALAT1, TYK2, CD74, HLADRB1, and COL3A1 were among the highly-expressed
discriminatory genes among cell types. 28 significant spatial interactions (p<0.1) were found

resulting in 7 microdomains.

e Comparison of microdomains to niche neighborhoods defined in He et al. shows that
macrophages in the stroma and TLS play a role in tumor progression.

* Ligand-Receptor analysis on microdomains identified IL-2 signaling, GPCR ligand binding,
TNF activity, and TGF regulation to be significant cell-cell communication channels in NSCLC

progression (p<le-04).
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Unbiased Cell Typing Extracts Numerically Stable, Spatially Distinct and
Biologically Interpretable Recursive Cell Types
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Bayesian Interpretation of Recursive Cell Types Using
Pre-Defined Tumor/Immune Phenotype Likelihoods
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1. Green circles denote distinct sub-populations based on goodness-of-cluster
2. Red cell types denote a sub- population with a distinct parent not from level 1
3. Purple cell types denote cell population that derive level 1 distinctiveness

Pointwise Mutual Information (PMI) [3] Maps
Quantify Spatial Heterogeneity

Use biomarker expression /
identity to..

P = Probability

P(A,B) =3 w(d;o) P(A, B; d)

PMI(A, B) = log [P(A, B)/ P(A) P(B)]

PMI = Pointwise Mutual Information
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Stage-Il vs Stage-lll patients for
Recursive Cell Types (p < 0.1)
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rich w/ presence of macrophages

Conclusions
* We demonstrate the generalizability of SpacelQ Platform by applying it to spatial

transcriptomics datasets. The applications to

mIF and brightfield pathology datasets has been

showcased previously (ESMO 2024, SITC 2024)

* QOur recursive unbiased cell typing revealed 1
cell mean gene expressions.

6 cell types based on the top 100 most variable

* Unbiased cell types were characterized by Bayesian probability assignments on known
predefined phenotypes and discriminatory genes measured from inverse coefficient variation

estimates.

* The inferred microdomains between these unbiased cell types generated the spatial domain

network that is associated with cancer stage

progression.

* We performed niche mapping and ligand-receptor analysis on selected microdomains to
further understand the potential biological and molecular basis underlying its association to

cancer progression.

A Bayesian framework for cell-based microdomain discovery from spatially resolved
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Microdomain Families Emerge from Spatial Domain PMI Network
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Spatial ligand-receptor interaction between 11110:22121 (more frequent in Stage lll patients)
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Lung 13 patient (Stage Il) is an outgroup in hierarchical clustering

Spatial ligand-receptor interaction between 11120:12221 (more frequent in Stage Il patient)
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High ligand-receptor interaction despite differential spatial interaction
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