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Summary
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Background: The spatial intratumor heterogeneity (ITH) is widely acknowledged as driving therapeutic 
response and providing fuel for drug resistance [1,2]. Currently, patient selection for immunotherapy is 
driven mostly by PD-1/PD-L1 based IHC tests and mutational analysis. These oversimplified approaches 
fail to predict the risk of recurrence, therapeutic response and drug resistance with high accuracy. We 
hypothesize that functional responses of heterogeneous non-random spatial arrangements of tumor, 
stromal and immune cells in the tumor microenvironment are determined by distinct combinations of 
their internal states and spatial interactions within neighborhoods. This approach discovers functional 
collections of neighboring pixels highly predictive of disease progression and leads to tumor promoting 
and tumor restraining microdomains, as organizational units of spatial ITH, and microdomain-specific 
network biology predictive of disease outcomes [3-6]. Deriving the spatial networks within each 
microdomain with unbiased spatial analytics and the underlying network biology through explainable 
AI, is key to understanding tumor initiation, tumor progression, and response to therapy.

Problem: There has been an explosion of spatial imaging technologies using immunofluorescence 
and/or mass spectrometry for intact tissues measuring protein expressions, DNA and RNA probes. The 
first step in the current approaches for extracting high-value knowledge from these multiplexed 
datasets is to segment cells accurately. Despite decades of research, this step remains elusive due to 
imaging artifacts leading to low-quality cell segmentation. Those artifacts may lead to incorrect cell 
phenotypes, incomplete cell phenotype atlases, and missing rare cell, fusion cell and/or transition cell 
types. 

Solution: To address these issues, we present a cell segmentation-free approach on a challenging, low-
resolution hyperplexed imaging mass cytometry dataset of triple negative breast cancer [7]. This 
approach discovers functional collections of neighboring pixels highly predictive of disease progression 
and leads to tumor promoting and tumor restraining microdomains and microdomain-specific network 
biology predictive of disease outcomes
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Unbiased Spatial Analytics and Explainable AI [3-6]
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Unlike the Biased Intensity Thresholding Approaches 
Unbiased and Automated Functional Cell Phenotyping Discovers 
Transitional, Multi-Transitional Cell States and Fusion Cell Types 

Critical to Disease Progression
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• Heterogeneity in 
biomarker expression 
causes subjective and 
biased thresholding 
methods to fail

• Transition cell states 
emerge with statistical 
and spatial dependencies

• Unbiased and automated 
functional cell 
phenotyping identifies 
fusion cell types and 
transitional cell states
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Triple Negative Breast Cancer

Number 43

Age (years, Mean +/- SD) 62 +/- 17

Age (years, Min/Max) 26/90

Disease Free Survival (months, Mean +/- SD) 38 +/- 37

Disease Free Survival (months, Min/Max) 0/144
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Triple Negative Breast Cancer 
Study: 43 patients, 31 Abs, 
imaging mass cytometry [7] 

Biomarker histograms highlight the tissue heterogeneity in the TNBC patient cohort.
For illustration we show the sub-cohorts in red (DFS > 7 years), blue (DFS < 1 months) and green (19 < DSF < 39 months).

(Left) Cellular phenotypic hierarchy derived by spatially regularized latent 
variable model. 
(Middle) Lower triangular matrix depicting the number of cells with shared 
ownership probabilities between each pair of FPs.
(Right) Z-Score weighted signatures for the phenotypic hierarchy.

PMI maps are computed for each tissue sample to quantify the spatial co-occurrence of 
each pair in the phenotypic hierarchy in relation to a random background distribution to 

highlight the spatial tissue heterogeneity in the TNBC cohort.
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