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Summary Unbiased Spatial Analytics and Explainable Al [3-6] Unlike the Biased Intensity Thresholding Approaches
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Solution: To address these issues, we present a cell segmentation-free approach on a challenging, low-
resolution hyperplexed imaging mass cytometry dataset of triple negative breast cancer [7]. This
approach discovers functional collections of neighboring pixels highly predictive of disease progression
and leads to tumor promoting and tumor restraining microdomains and microdomain-specific network i
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PredxBio Platform Unravels Tumor Heterogeneity
from Tissue Biopsy to Network Biology

Cell Segmentation-Free Analysis of Low-Resolution Hyperplexed Imaging Mass Cytometry Dataset of Triple Negative Breast Cancer
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each pair in the phenotypic hierarchy in relation to a random background distribution to
highlight the spatial tissue heterogeneity in the TNBC cohort.
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