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Abstract— Segmenting a broad class of histological
structures in transmitted light and/or fluorescence-based
images is a prerequisite for determining the pathological
basis of cancer, elucidating spatial interactions between
histological structures in tumor microenvironments
(e.g., tumor infiltrating lymphocytes), facilitating precision
medicine studies with deep molecular profiling, and
providing an exploratory tool for pathologists. This
paper focuses on segmenting histological structures in
hematoxylin- and eosin-stained images of breast tissues,
e.g., invasive carcinoma, carcinoma in situ, atypical and
normal ducts, adipose tissue, and lymphocytes. We propose
two graph-theoretic segmentation methods based on local
spatial color and nuclei neighborhood statistics. For
benchmarking, we curated a data set of 232 high-power
field breast tissue images together with expertly annotated
ground truth. To accurately model the preference for
histological structures (ducts, vessels, tumor nets,
adipose, etc.) over the remaining connective tissue and
non-tissue areas in ground truth annotations, we propose
a new region-based score for evaluating segmentation
algorithms. We demonstrate the improvement of our
proposed methods over the state-of-the-art algorithms in
both region- and boundary-based performance measures.

Index Terms— Histopathological image analysis, image
segmentation, evaluation metrics, graph partitioning, image
statistics.
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I. INTRODUCTION

ISTOLOGICAL structure determination helps elucidate

spatial tumor biology and inform the pathological basis
of cancer. For example, in the hematoxylin and eosin (H&E)
stained tissue image shown in Fig. 1 (left), normal ducts (top
left corner) have two layers of nuclei, epithelial (inner) and
myoepithelial (outer), surrounding a cavity (lumen). The struc-
ture of the normal ducts is disturbed when ducts develop into
carcinoma in situ (outlined in green), in which the epithelial
nuclei proliferate in close proximity and fill the lumen cavity.
The structure is further perturbed as the proliferating cells
become invasive carcinoma (outlined in blue), destroying the
duct confinement, freely infiltrating into the breast stroma, and
heading toward a blood vessel (outlined in teal), indicating
an increased risk of metastasis. Host response to invasive
carcinoma can be seen in Fig. | (right), where the tumor nest
is infiltrated with lymphocyte nuclei (small, dark purple). For
other histological structures such as adipose tissue, the nuclei
are small and found on one side of the cell wall surrounding
large lipid droplets (white blobs). Accurate segmentation of
histological structures can thus help build a spatial interaction
map to serve as an exploratory tool for pathologists [1]. Seg-
mentation can also facilitate precision medicine studies which
perform microdissection for deep molecular profiling [2].

Histological structure segmentation is very challenging
because structures such as normal ducts and carcinoma in situ
have well-defined boundaries, but many others, invasive carci-
noma and stroma for example, do not. Structural morphologies
also vary significantly depending on tissue origins (e.g., breast
vs lung), tissue preparation and staining practices. Historically,
biomedical image analysis literature has focused on segment-
ing nuclei, since nuclei are building blocks for all higher level
tissue structures [3], [4] (e.g. a duct is a hollow structure lined
by rounded epithelial cells surrounding a lumen). More recent
methods have expanded to segmenting specific histological
structures, such as the glands in prostate and breast tissue
images, ductal carcinoma in situ in breast tissue images [5],
with approaches based on nuclei-lumen association [6], region
growth [7], region-based active contour in combination with
Markov Random Field [8], deep learning [9], and graph-based
techniques [5].

Other approaches involve engineering disease- and organ-
specific extractors [10], [11] to facilitate analysis of publicly
available datasets, such as MITOS (mitotic figures) and GlaS
(glands) [12]. For example, a typical gland segmentation
strategy may involve first identifying lumen and then searching
for the surrounding epithelial layer of cells [13]. However, this
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Fig. 1. Broad class of histological structures found in breast tissue
images. These include: (Left) two normal ducts outlined in magenta and
black; ductal carcinoma in situ outlined in green; a large nest of invasive
carcinoma outlined in blue; adipose tissue (fat cells) outlined in different
colors; (Right) a large tumor nest with infiltrating lymphocytes outlined.

strategy is unlikely to work in the case of breast carcinoma in
situ, where the duct lumens may be completely filled by tumor
cells (structure outlined in green in Fig. I, left). Generative
models have been proposed for foreground-background seg-
mentation for H&E images with one dominant boundary [14].
Our goal in this paper is to go beyond segmenting nuclei and
glands by designing broadly applicable methods for extracting
a large class of histological structures.

Contributions: Our paper focuses on segmenting histo-
logical structures in H&E stained images of breast tissues
(Fig. 1), in which hematoxylin stains nuclei to bluish-purple
colors, and eosin stains cytoplasm and the stroma matrix to
red-pink colors. We hypothesize that spatial image statistics
present discriminative fingerprints for segmenting a broad
class of histological structures. To test this, we propose two
graph-theoretic segmentation methods, each of which relies on
characterizing local spatial statistics. In the first method (II-B),
we measure pairwise pixel color statistics in an H&E opti-
mized color space built to enhance the separation between
hematoxylin and eosin stains. We expect the first method
to be successful in segmenting structures with well-defined
boundaries (e.g., adipose tissues, blood vessels). The second
method (II-C) is designed to segment large amorphous his-
tological structures (e.g., tumor nests), where we rely on the
spatial statistics of inter-nuclei distances.

To benchmark our proposed H&E image segmentation algo-
rithms, we curated a dataset of 232 breast tissue images of size
2K x 2K pixels extracted from whole slide images (WSIs)
scanned with Aperio XT ® at 20x objective magnifica-
tion (0.5 um/pixel) resolution (Leica Biosystems Inc., Buffalo
Grove IL, USA). The segmentation ground truth was marked
by two pathology trainees and corrected by a practicing breast
pathologist. Since we focus on segmenting a broad class of
histological structures, we chose to compare the performance
of our methods to other state-of-the-art algorithms adapted
from the field of natural images to the domain of H&E. Many
of these methods have rich feature vocabularies (based on
color, textures, etc.). In comparison, our methods use only
one feature that captures spatial statistics for segmentation
although more features can be integrated. We also com-
pared our methods to publicly available H&E segmentation
algorithms, one of which is gland-specific, and hence,
provides baseline results for benchmarking. Finally, we present
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Fig. 2. H&E optimized color space. The H&E image from Fig. 1 (left)
is transformed into H&E-hue space and shown as a heatmap (left) and
as an angular histogram (right). Hematoxylin stained pixels map into a
distribution of angular values centered around 0 radians and are shown
in dark blue in the heatmap. Eosin stained pixels map into a distribution
of angular values widely spread around —1.7 radians and are shown in
yellow-green colors in the heatmap. White pixels map into a distribution
of angular values narrowly spread around 2.24 radians and are shown
in red in the heatmap. We model the hue values as a mixture of three
univariate von Mises distributions (H, £, and W, see text) and a uniform
distribution (O, not shown) to account for other pixels (black tissue folds,
red blood cells).

a new region based metric for evaluating the segmentation
algorithms.

Il. METHODOLOGY

The two segmentation methods proposed have few common
elements, namely the H&E optimized color representation
(II-A1) and appearance normalization (II-A2). The segmen-
tation methods differ in the way they capture image statistics
and embed them into graph partitioning strategies, and hence
they will be described separately in Sections II-B and II-C.

A. H&E Color Preprocessing

1) H&E Optimized Color Space: We begin with the obser-
vation that when the standard opponent-color (with red-
green, yellow-blue as opponent color axes) hue-saturation-
brightness (HSV) transformation is applied to RGB images
from H&E [3], [15], hematoxylin and eosin stain colors are
restricted to blue-red quadrant of the color wheel. Our goal
is to enhance the separation between the color appearances of
the two stains so that the downstream spatial analysis pipeline
is more robust (Fig. 2). It is worth noting that the nuclei
of the various cell types stain with different intensities of
hematoxylin. An additional goal of this color representation is
to homogenize the variations within the hematoxylin and eosin
stain colors and thus, facilitate the extraction of histological
structures as in Fig. 1, which extend beyond subcellular
components (e.g. nuclei).

For this, we optimize the construction of a color space to
maximally separate the hematoxylin and eosin appearances.
Specifically, we asked an expert to select a bag of dominantly
stained hematoxylin and eosin pixels. In the future, this
process can be automated by calculating stain vectors for
hematolyxin and eosin over a population of H&E slides and
using these vectors to derive representative pixels [15], [16].
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Fig. 3. Color appearance normalization of H&E images. A source
image (left) is normalized (right) to have the same color appearance as
the target image (center).

After representative pixel selection, we perform singu-
lar value decomposition on this data to obtain an orthog-
onal projection matrix of size 3 x 3. We offer a specific
interpretation to the projected coordinates, similar to the
HSV space. In particular, the projection onto the first singu-
lar vector (enforced to have non-negative values) yields an
H&E-brightness value b. The two remaining projected coor-
dinates ¢; and c¢3 form a complex plane where we define

,/c% —i—c% and H&E-hue, an angular

variable # = tan~!(c;+ic3). From this construction, we expect
the hue values of hematoxylin and eosin stained pixels to
be maximally separated in the complex color plane. For
illustration, the angular difference in the mean hue values
of pixels stained with the two stains in Fig. 1 is 1.7 radians
(Fig. 2). This spread is more than the value of ~ 0.4 radians
in the standard HSV color space. We observe that while the
fibroblast nuclei appear darker than the epithilial nuclei in
the RGB space (Fig. 1), this difference is less pronounced
in the H&E-hue space, as indicated by the narrow spread of
hematoxylin stained pixels’ angular values around 0 radian
(Fig. 2, right).

Hue value is unstable when the saturation is low. This is
true for pixels mapped to the origin of the complex plane
(c2,¢c3 =~ 0). In the standard HSV representation, all white
pixels will have low saturation values and hence unstable hue
angles [15]. Note that white pixels can form a significant por-
tion of an H&E image because of adipose tissue, lumen, tissue
tears, and shrinkages. In our color representation, by learning
the rotation matrix from expert-selected representative pixels,
we are able to give white pixels higher saturation values and
more stable hue angles. However, there will be a population
of pixels with low saturation values (< 0.005) that map to
the origin of the complex plane. We empirically estimated
this population to be around 0.3% for the H&E images of
size 2K x 2K that we used here. On closer inspection, these
pixels lie around the boundaries of histological structures such
as ducts or tumor nests. However, we do not hard code this
empirical estimation but instead account for this minority
population in a color spatial statistics model explicitly as
described in the next section.

2) H&E  Color  Appearance  Normalization: Any
inconsistencies in sectioning, staining, and imaging result
in variation in color appearance of H&E images. Previous
normalization methods have utilized stain vector estimation
methods [17] such as non negative matrix factorization [15].
We found these methods ineffective because the color

H&E-saturation s =

distributions for some images in our dataset are skewed
toward predominantly one stain, either hematoxylin or eosin.

We hypothesize that the color appearances of two images are
similar if their color statistics match. However, matching the
statistics of the whole pixel population of the source and target
images as done in [18] can result in unintended artifacts. For
example, if the source image has mostly stroma (eosin stained)
and the target image has mostly nuclei clumps (hematoxylin
stained), then matching the statistics of all pixels will turn
many eosin stained pixels in the source image to bluish-
purple and mistakenly change the cellular component identity
of those pixels from stroma to nuclei. To address this issue,
we first identify four classes of pixels: H (nuclei), £ (stroma,
cytoplasm), W (fat, shrinkage), and O (others: pixels with
low saturation values, pixels from red blood cells and tissue
folds).

To identify the four classes, we convert H&E images
into H&E-hue, H&E-saturation, and H&E-brightness channels
introduced in II-A1. H&E hue space is angular and given the
separation between hematoxylin-stained, eosin-stained, and
white pixels in this space, we model the hue values with a
mixture of univariate von Mises distributions. Univariate von
Mises distribution for angular statistics is the equivalent coun-
terpart of the univariate normal distribution for linear statistics.
The von Mises distribution is characterized by two parameters,
amean — 7 < u <7m and a concentration parameter x > 0,
and is given by: f(x) = {27 In(x)} "' expx cos(x — u), where
Ip(x) is the modified Bessel function of the first kind with
order 0 [19]. A mixture of K univariate von Mises distributions
is given by Zle my f (x| g, ki), where my’s are the prior
probabilities and u’s, x’s are the means and concentration
parameters. To explicitly account for pixels with low saturation
values and unstable hue angles, as well as pixels arising from
black tissue folds and red blood cells (O class), we add a
uniform angular distribution as an additional mixture com-
ponent. The parameters of the mixture model, including the
prior probability of the uniform distribution are found using
an expectation-maximization (EM) algorithm [19]. In practice,
we found that the prior probability of the uniform distribution
converges to a value in the range (0.001, 0.01), depending on
the structural content of the H&E images.

To normalize color appearances, we match the statistics of
the source and target images. The statistics of a distribution
can be characterized by an infinite set of moments. How-
ever, for analytical convenience, we compute moments only
up to the fourth order (mean, standard deviation, skewness,
kurtosis). In each channel, we match the moments of pixels
from H and £ classes from the source image to the target
image [20]. We do not modify the statistics for pixels in the
W and O classes because the H&E-optimized color space is
not suitable for these classes and hence will introduce artifacts
(e.g. white pixels can turn into gray). After normalizing the
statistics in the H&E optimized color space, we convert the
resulting pixel values into RGB space to obtain the normal-
ized image, using the inverse of the rotation matrix derived
in II-A1 (Fig. 3).

Normalized images will serve as inputs to two different
segmentation strategies based on (1) spatial color statistics
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Fig. 4. Pointwise mutual information (PMI). An example H&E
image where PMI might be more informative than joint probability in
detecting object boundaries (see text for more details). H&E image (left)
shows three randomly sampled pixel pairs (red, green, and blue) and
their mapping into joint probability space log P(A, B) (middle) and PMI
space (right).

and (2) inter-nuclei distance distributions, as detailed in the
following subsections.

B. Spatial Color Statistics Based Segmentation

1) Motivation: Fig. 4 shows a normal breast tissue with a
large area of eosin stained connective tissue surrounding a
small duct (lower left). The nuclei in the duct are stained with
hematoxylin, while their cytoplasm exhibits a mixture of both
stains, since the hematoxylin from the nuclei can leak into
the cytoplasm. Statistically speaking, if we stand on any of
these nuclei (red box, Fig. 4), we expect to be surrounded
by hematoxylin stained pixels denoting the nuclei and mixed
hematoxylin-eosin stained pixels denoting the cytoplasm. In a
given neighborhood of each cell in the duct, we should find
other cells exhibiting similar properties. On the other hand,
if we stand on a fibroblast nucleus, which is found usually
scattered in the connective tissue (blue box, Fig. 4), we will
find mostly eosin stained pixels in its neighborhood. With the
assumption that the spatial color statistics within a structure,
such as ducts (red box, Fig. 4), is stronger than across its
boundaries (green box, Fig. 4), we should be able to segment
ducts while ignoring the fibroblast cells scattered among the
connective tissue.

2) Modeling Spatial Color Statistics: As described in sub-
section II-A2, using a mixture of univariate von Mises, we
can separate the image pixels into four classes, but this is
insufficient to delineate histological structures, such as clusters
of ducts, because such structures contain pixels from all classes
(Fig. 1). In order to segment these structures, we assume that
the spatial color statistics within a structure such as ducts is
higher than across its boundaries and we show how to model
this spatial color statistics using a mixture of bivariate von
Mises distributions.

Since the H&E-hue is a angular variable, the joint distri-
bution P(A, B) of hue values from two neighboring pixels
lies on a torus. We will model this joint density as a mixture
of bivariate von Mises distributions. Let the values of pixel
A and B in H&E-hue space be ¢ and y, respectively. The
bivariate distribution of two angular variables, —7 < ¢ <7
and —7 < y <7 is:

fe(p, w) = Ccexplry cos(¢p — u) + Kkz cos(y —v)
—k3cos(p—u—y+v)}, (1)

where u, v are the means and x1, k» > 0 are the concentrations
of ¢, v, respectively. k3 is the correlation coefficient and C, is
the normalizing constant. The full bivariate von Mises model
has 8 parameters, but we use a reduced 5-parameter cosine
model with positive interaction (Eq. 1), as suggested in [19].

The marginal density is: f.(w) = C2nly(x13)
(w) exp{r cos(w — v)}. The value of x3 decides whether the
distribution is unimodal or bimodal. In particular, the joint
density is unimodal if x3 < k1x2/(,c] + k2) and it is bimodal
if k3 > k1k2/(k1 + x2) when k1 > k3 > 0 and xp > x3 > 0.

When we consider the values of neighboring pixels of the
H&E image in the H&E-hue space, there are at most six
possibilities for the probability masses on the torus: H — H,
E—E, W — W, and the three different pairwise interactions.
To model this joint distribution, we use a mixture of six
unimodal bivariate von Mises distributions. We also include a
uniform distribution to account for the interactions involving
pixels in the O class (as in subsection I1-A2).

A mixture model of K bivariate von Mises
distributions can be parameterized by: fy(d,w) =
ZiK:l m; fi(¢, wlui, vi, k1i, k2i, k3;), where m; is the
mixing coefficient (Zle mj = 1), f; is a cosine density with
parameters (u;, vi, k1;, k2i, 3;) (Eq. 1). The initial values
of u;’s, vi’s, x1;’s, and xp;’s are generated from the mixture
of univariate von Mises for all the pixels in the image.
The concentration parameters ki;, k2;’s and the correlation
parameters x3;’s satisfy the unimodality conditions for f;’s.
We constrain x3;’s to have values between —1 and 1 to
avoid distortion to the elliptical patterns (observed in sampled
data) [19]. Together with the above constraints, the parameters
of the mixture are estimated by an EM algorithm [21].

Since there are at most seven components of the mixture
model as reasoned above, we do not undertake an explicit
model selection step for the mixture model. If the H&E image
lacks any one of the four basic pixel classes, (H, £, W, O),
the EM algorithm will drive the mixing proportions of all
components involving that class to a value near zero.

3) Mutual Informationin H&E-Hue Space: Consider modeling
the statistical dependencies between hue angles of neighboring
pixels in H&E optimized color space. If we use the joint
probabilities as a measure of statistical association, we may
find that the pixel pair stained with eosin in the connective
tissue (CT) has a higher probability than a pixel pair stained
with hematoxylin inside a duct or a hematoxylin-eosin pixel
pair across the CT-duct boundary. However, because of the
overabundance of eosin in some H&E images (Fig. 4, left),
the combination of hematoxylin-eosin pixel pairs across the
CT-duct boundary may have an equivalent or even higher
probability than a pixel pair stained with hematoxylin inside
the duct. As shown in Fig. 4 (middle), the pair stained with
eosin (in blue square) has the highest joint probability and the
pair stained with hematoxylin (in red square) have similar joint
probability to the hematoxylin-eosin pair (in green square).
In other words, the joint probability might not be sufficient to
detect correct boundaries. As suggested by [22], this can be
improved by the use of mutual information (MI) to correct for
relative abundance.
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_ To compute MI, a number of pixel pairs (i, j), with features
fj and f; (e.g., using H&E-hue angles, f; = ¢i, fj = v;)
and distance d; j, are selected randomly from the image. The
value d; ; is defined as d; j =2+ 2 x |r| where r ~ N(0, o)
(see III-C for the selection of o). The joint probability of
features of pixels i and j at a distance d; ; is denoted by
p( f,, ]3 ij)- The overall joint probablhty is defined as:
P(fif}) = 33 _g wdp(fi. [ dij). where w is a
Gaussian weighting “function which decays to zero as d; j
increases and Z is a normalization constant.

The pointwise mutual information (PMI) is calculated from
the joint probability P ( ﬁ, f j) modeled by a mixture of bivari-
ate von Mises distribution and the marginal probabilities P ( f,)
and P( f]) modeled by a mixture of univariate von Mises

distributions. In particular, PMI,( f,-, fj) }f)((ffl)gz;
where p is a free parameter that can be selected to oi)tlmljze

the segmentation on a training set. In this paper, we scanned
through multiple values of p to find the best setting for our
dataset (see III-C). The benefit of PMI as a measure of spatial
statistics is shown in Fig. 4. Although the joint density of the
pixel pair stained with hematoxylin inside the duct (red square)
is similar to that of the hematoxylin-eosin pixel pair across the
boundary (green square) (middle), the PMI of the former is
markedly higher than that of the latter (right).

4) Graph-Based Spectral Segmentation: We pose the seg-
mentation problem in graph-theoretic terms, where each pixel
in the image is a node in the graph and nearby pixels are
connected with weights (affinities) denoting the likelihood
of grouping two pixels into the same histological structure.
We use spectral methods to partition the graph into mean-
ingful components. The success of spectral methods depends
largely on the choice of an affinity function. We denote the
affinity matrix by W with elements w;,; defined as: w; ; =

ePML(Fif)) o demonstrate the effectiveness of PMI-based

affinity function, we pick in Fig. 5 (left) three patches (outlined
in red, green, and blue) and compute the affinities between
the center pixel in each patch and its neighbors using only
H&E-hue as the feature. The heatmaps show affinities in which
hotter colors indicate greater affinity values. In the red patch,
the pixel stained with hematoxylin in the center has high
affinity with its neighboring hematoxylin stained pixels. In the
green patch, the center eosin stained pixel is more similar to
the eosin stained pixels on the left and less similar to the
hematoxylin stained pixels on the right. In the blue patch,
the center hematoxylin stained pixel has high affinity to the
hematoxylin stained pixels on the right but low affinity to
the white pixels on the left. These heatmaps indicate that
H&E-hue-based affinity function is a meaningful measure for
H&E images. We further establish the effectiveness of H&E-
hue-based affinity function by comparing results from our
segmentation method to other spectral methods which use
richer feature vocabularies (see section III).

We use H&E-hue-based affinity measures as input to a
standard spectral graph partitioning method that has been
the state-of-the-art for segmenting natural images (see [23]
and references therein). From the affinity matrix W, we find
eigenpairs (0, A) of the generalized system: (D — W)o = ADov

log

Fig.5. Spatial color statistics based segmentation method. Pairwise
pixel affinities are measured from PMI (left) and given as input to standard
spectral graph segmentation methods (right). Note that the segmentation
method sucessfully groups nuclei into tumor nests instead of separating
them into individual nuclei because of the homogenizing characteristic of
H&E-hue color space and the effectiveness of the affinity function. The
method also successfully segments the blood vessel in the center, but
absorbs the blood vessel in the top center into the stroma.

where D is a diagonal matrix with d;; = > ji Wi,j- Dom-
inant eigenvector maps (small eigenvalues) indicate bound-
ary locations of potential histological structures. As is well
known, no single eigenvector will be capable of capturing
all possible boundaries in complex images. Hence, the usual
practice is to calculate an edge strength map from oriented
spatial derivatives of a large number of dominant eigenvec-
tors. A postproccessing step is used to eliminate spurious
boundary pixels [23]. In Fig. 5 (right), we show the over-
all edge strength map (maximum over all orientations of
the edge strength map) and the resulting segmentation after
postprocessing.

C. Nuclei Neighborhood Statistics Based Segmentation

1) Motivation: Local spatial statistics vary between the var-
ious histological structures in breast tissues. We observe this
phenomenon in Fig. | (left). The spatial arrangement of epithe-
lial nuclei in normal ducts (top left corner) is disturbed as ducts
develop into carcinoma in situ (outlined in green) and further
damaged as carcinoma becomes invasive (outlined in blue),
destroying the duct confinement and infiltrating through breast
stroma. As a first approximation, we chose to characterize this
spatial arrangement of the epithelial nuclei by the physical
distances between pairs of nuclei and consequently developed
the method interNucDist.

2) Characterizing Nuclei Neighborhoods With Superpixels:
Nuclei segmentation in histopathological images is an exten-
sively researched problem [24]-[27]. However, the close
proximity of epithelial cells and the prevalence of mitotic
figures (dividing cells) in breast cancer make it difficult to
accurately detect nuclear boundaries. To avoid this issue, we
identify putative nuclei locations in the form of superpixels
in the hematoxylin stained tissue regions ({) and characterize
neighborhood statistics using superpixels derived from eosin
stained (£) and white (W) tissue regions. Tissue regions in the
O class are ignored due to their small population and being
diagnostically not relevant.

In order to generate superpixels from H&E images
(Fig. 6, top left), the pixel colors are first normalized as
in II-A2. Then, we calculate posterior probability values
using the EM algorithm for the three classes H, £ and W
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Fig. 6. Nuclei neighborhood statistics based segmentation. (TOP)
H&E image (left) is decomposed into four separate classes: H, €, W,
and O (not further processed) (middle). Each class is modeled with a
set of superpixels here in purple (M), pink (£€), and cyan (W) (right).
(BoTTOM) Delaunay triangulation provides superpixel neighborhoods
(left). Distribution of distances between superpixels of the same class
is used for greedy graph partitioning (middle). Superpixels in H and W
classes are segmented and merged into two dominant ducts (right).

(Fig. 6, top middle) as described in II-A2 and threshold the
probabilities to generate ownership masks assigning each pixel
to a unique class. Finally, we follow the algorithm proposed
in [11] to fit circular shaped superpixels to the ownership
masks (Fig. 6, top right). The circular shapes are used for
analytical convenience and to serve as a representation for
putative nuclei and their neighborhoods.

To characterize nuclei neighborhoods, we combine super-
pixels from all three classes, H, £ and W, and perform a
Delaunay triangulation using their center coordinates (Fig. 6,
bottom left) as in [28]. The Delaunay triangulation preserves
physical distances and allows us to build and partition graphs
separately in each class. Additionally, the graph generated
by the triangulation helps avoid the mistake of connecting a
fibroblast nucleus with an epithelial nucleus when they are
separated by a large area of stroma.

Concurrent to our research, Bejnordi et al. developed a
graph based method for detecting DCIS in WSI [5]. However,
our methods are different in that: we use superpixels in H,
E, W, and O, pixel classes that are not specific to epithelial
nuclei (lymphocytes are also accounted for); our methods
can segment a broad class of histological structures such as
fat clusters, blood vessels, lymphocyte aggregations, tumor
nests while their method focuses on ductal carcinoma in
situ. In addition, our methods are unsupervised at single
scale, while their method involves supervised classification
at multiple scales; our methods include a rule for merging
histological structures identified in different pixel classes.

3) Segmenting Superpixels Into Histological Structures:
Neighborhoods derived from the Delaunay triangulation can
be richly characterized [28]. However, in this paper, we chose
to test a simple property, namely pairwise distances between
superpixels of the same class. In particular, for each class we
build a separate graph in which each superpixel is a node, and
neighboring superpixels of that class are connected by an edge
if their distance is under a threshold 7. We set the distance
threshold 7 to be at least the median of the distance distribution

between neighboring superpixels (shown in Fig. 6, bottom
middle). The distance threshold 7 is set to maximize the
performance of the algorithm on the training set (III-C).

After building the graph over superpixels, we use a greedy
connected component analysis algorithm (Matlab built-in func-
tion conncomp) to cluster superpixels into segments. The
superpixels in the £ class are considered as background and
hence, are not processed in this step.

Next, we sort the segments in H and W classes based on
their tissue areas in a descending order. The segments from
these classes might overlap with each other because of com-
plex histological structures such as the ducts. We combine seg-
ments from these two classes with one simple post-processing
rule: if a segment WV; overlaps with a segment 7, regardless
of the overlapping area, the overlapping part is absorbed into
‘H ;. This rule prioritizes nuclei regions over white areas. For
example, it allows us to associate the lumen area with the
surrounding epithelial nuclei to form a duct. After merging
segments from H and W classes, the remaining tissue regions
in £ and O classes are considered as background. The post-
procesing rule was established to optimize the segmentation
results on our dataset (Fig. 6, bottom right). Although this rule
might not be universally applicable, we hope to uncover any
missing rules with an expanded set of images and annotations.

IIl. EXPERIMENTS AND RESULTS
A. Dataset

We collected 30 breast H&E WSIs and scanned them using
Aperio XT ® at 20x magnification and 0.5xm pixel resolu-
tion. As a quality control measure, we eliminated WSIs with
serious artifacts such as air bubbles and pen marks, resulting in
a total of 23 WSIs for further analysis. We partitioned these
whole slide images into tiles of size 2K x 2K and selected
a subset of 232 tiles with tissue appearance ranging from
normal to invasive cancer. Some images in the dataset consist
mostly of histological structures with clear boundaries, such
as normal ducts and carcinoma in situ (Fig. 1, left, magenta,
black, and green blobs). Other images are mostly textural
because of the severe disruption in tissue architecture caused
by invasive cancer (Fig. 1, right). Although tiles were extracted
at 20x to cover complex histological structure landscape,
many methods chosen for comparison do not scale efficiently
to images of size 2K x 2K such as JSEG [29], and NCuts [30].
Therefore, we downsampled the images to size 512 x 512,
at 5x magnification and 2um pixel resolution to ensure a
fair comparison of methods. From the 23 WSIs, we chose
17 WSIs and 174 extracted tiles as training set for scanning
parameters of all algorithms for comparisons. The remaining
6 WSIs with 58 tiles were used as a test set for evaluating their
performance.

B. Ground Truth

Ground truth annotation (Fig. 1) was provided by two
pathologist trainees and corrected by a practicing breast
pathologist. The annotating software allows users to identify
ducts, vessels, carcinoma in situ, tumor nests and other his-
tological structures as foreground segments. The remaining
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portion of the image, namely stroma and non tissue areas,
is considered as background. There could be more than one
background segment in an image.

Interestingly, while the description of histological structures
requires expert knowledge, we observed that non-expert anno-
tators can readily segment H&E images into coherent segments
without necessarily giving the segments their appropriate
labels. We hypothesize that there is a transfer of knowledge
from segmenting natural images (car, tree, road, etc.) to
segmenting histological structures in H&E images. Therefore,
we recruited two non-experts to annotate a subset of our
data (79 images). The non-experts were given instructions to
trace boundaries of up to 15 coherent segments per image
(Fig. 7). Before starting to annotate, they were each shown
five examples of expertly annotated images, but no further
training was provided. To speed up the annotation process
and to avoid confusions, most of the images annotated by the
non-experts are well-differentiated, i.e., histological structures
with clear boundaries such as normal ducts or carcinoma in
situ. Our goal in collecting these annotations is to understand
the performance gap between the expert, non-expert observers,
and computational algorithms.

Although there are large publicly available datasets
such as TCGA, high quality annotations of histological
structures are not available. It is expensive and time con-
suming to collect such detailed annotations from pathol-
ogists. By making our data publicly available, we wish
to attract attention of the biomedical imaging community
and encourage other researchers and institutions to create
high quality and diverse annotated histological datasets. Our
data, including H&E tiles, ground truth annotations, and
train/test division can be accessed from http://csb.pitt.edu/
Faculty/chakra/pubs/TMI_HESegmentation.tar.gz.

C. Algorithms for Comparison

Since our focus is on segmenting a broad class of histolog-
ical structures, we chose to compare the performance of our
methods to other state-of-the-art algorithms adapted from the
field of natural images to the domain of H&E. In addition, we
also compared our methods to publicly available H&E seg-
mentation algorithms: GraphRLM [28] and GlandSeg [6].
Although GlandSeg is gland-specific, it can provide base-
line results for benchmarking. In summary, we evaluated the
following algorithms:

Methods proposed in this paper:

e colorStats: our proposed color statistics based
method using H&E-hue with affinity values derived from
PMI. Only one feature (H&E-hue) is used to build the
affinities for the spectral method.

two non-experts.
Methods motivated by histological data

e GraphRLM [28]: superpixels are calculated after iden-
tifying nuclei, stroma, and lumen pixels in RGB and
neighborhoods are characterized by 16 graph run length
features. Segments are produced using seed detection and
region growing algorithms.

e GlandSeg [6]: glands are identified by first segmenting
white lumens and then associating them with the sur-
rounding nuclei.

Methods motivated by natural images

+ gPb (gPb-OWT-UCM) [23]: current state-of-the-art nat-
ural image segmentation algorithm that uses 36 color and
texton features in a spectral method.

e crisp-bound [22]: La*b* color and variances (six fea-
tures) are used for deriving pair-wise affinities in a
spectral segmentation method.

e JSEG [29]: color quantization followed by region grow-
ing on this map using RGB colors.

e NCut [30]: normalized graph cut algorithm using bright-
ness, color, and texture features.

e MeanShift [31]: a local color (three features) homog-
enization method followed by region growing.

o EGB [32]: pairwise region comparison and greedy group-
ing of pixels using five features (RGB, xy-coordinates)

e HED [33]: deep learning-based boundary detection
method, in which, segmentation problem is viewed as
classifying pixels into either boundary or non-boundary.

From the set of 23 high quality WSIs, we took 17 WSIs
with 174 extracted tiles for scanning parameters and selecting
the best parameter setting for each algorithm. The remaining
6 WSIs with 58 tiles were used as a test set for evaluat-
ing the performance using the best parameter settings. The
parameter settings for EGB (14 settings), MeanShift (28),
NCut (15) are taken from the SEISM package [34]. For gPb
and crisp-boundary, we used the software off-the-shelf
to generate ultrametric contour maps [23] and scanned through
50 different thresholds (0.01:0.02:0.99) to obtain segmentation
results. For HED, we used pretrained model to detect bound-
aries for all images. Edge thinning on 50 different thresholds
(0.01:0.02:0.99) was used to generate the final boundary
maps. For GraphRLM and JSEG, 60 and 56 combinations
of parameters were chosen in the ranges described in their
respective papers.

In colorStats, there are two free parameters, ¢ and p.
We scanned through combinations of five values of ¢ (0.25, 1,
3,5, 7) and four values of p (1.25, 2, 2.5, 3). In inNuctDist,
we scanned through 38 values of distance threshold ¢
(15 to 200 pixels with a step of 5 pixels). We select the
fifteen largest segments in A and VWV for post-processing in
interNucDist.
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D. Evaluation Metrics

For each of the methods, we select the parameter setting
that maximizes the boundary metric F}, on the training set of
174 tiles. The boundary metric Fj, [34] refers to F-score for
boundary accuracy. Boundary pixels from segmentation results
are matched with ground truth boundaries within some dis-
tance, from which precision, recall, and F-score are calculated.
The best parameter setting based on Fj is used to generate
segmentation results on the test set of 58 tiles. In addition,
we also calculated the Dice metric as an additional criterion
for comparison [34].

Previously, Rand index was chosen as a region based evalu-
ation metric for tissue segmentation algorithms [14]. However,
Rand index is applicable to simple images with only one
dominant boundary. If the images are more complicated, Rand
index tends to over-reward segmentations with small unim-
portant islands (EGB results, Fig. 8) and fails to emphasize
important histological structures such as tumor nests. More
importantly, the experts emphasize partitioning the foreground
(e.g. ducts, carcinoma in situ) more than the background,
as in stroma, because of their diagnostic relevance. Thus,
we introduce a region score F, to more accurately reflect the
ground truth preference for foreground segments.

Because the segmentation methods are unsupervised, we do
not know which segments are foreground and which are back-
ground, unlike the ground truth. Our strategy is to score the
background segments of the ground truth first (to account for
their larger tissue areas), then score the foreground segments,
and finally combine the scores in a preferential weighting
scheme that emphasizes the foreground segments.

Let G, be the sets of pixels representing background
segments in the ground truth and S be the set of segments
in the segmentation result. For each background segment Gy,
starting with the largest one, we match it with the most
overlapping segment S; in the segmentation result and remove
S; from further consideration. For each match (Gy,, S;), we
assign a region overlapping score given by: sp, = [|Gp, N
Sill/IIGp; U S;ll, where N denotes intersection of the two sets
and U denotes their union. The overall background score s, is
given by the sum of s, each weighted by the fractional area
of background segment G, . In the case of images that have no
background, such as the ones of invasive carcinoma, the score
sp is handled by a weighting term, which will be explained
shortly. This process is repeated for each foreground segment
G j, in the ground truth, assigning each a score s . The overall
foreground score s is given by the sum of sy, each weighted
by the fractional area of G y,. In our dataset, all images have
at least one foreground segment.

We weight the importance of identifying foreground seg-
ments by a constant o, which combines foreground and
background scores as: F, = asy + (1 — a)sp. If there is
no background in the ground truth (e.g., invasive cancer
images), we assign a = 1, otherwise a = 0.75. This
measure can handle both over- and undersegmentation issues.
If a histological structure is oversegmented, the ground truth
is only matched with the biggest overlapping segment and
hence penalizes the oversegmentation behavior. Vice versa, if a
structure is undersegmented, dividing the overlapping area by

TABLE |
EVALUATION OF SEGMENTATION ALGORITHMS ON THE TRAINING
AND TESTING SETS. THE F-SCORES REPORTED ARE FOR THE
BEST PARAMETER SETTINGS LEARNED ON THE
TRAINING SET AND APPLIED ON THE TESTING SET

Methods Train Test

Fy Dice F Fy Dice F.
colorStats 04210  0.6704 0.3712 | 0.3933  0.7399  0.4012
inNucDist 0.5295 0.6553  0.4991 | 0.5508 0.7451 0.5617
Non-expert 0.61 NA 0.63 NA NA NA
GraphRLM 0.2144  0.4343  0.2564 | 0.1785 0.4258 0.2675
GlandSeg 0.2959  0.4598 0.2098 | 0.2872  0.485 0.2352
gPb 0.3995 0.6592 0.3454 | 0.3904 0.7333 0.3814
crisp-bound || 0.3371 0.6564 0.2727 | 0.3201 0.7426  0.3258
JSEG 0.4400 0.4667 0.4455 | 0.4098 0.4204 0.4178
NCut 0.3756  0.0944 0.1732 | 0.3538 0.0731 0.1811
MeanShift 0.3395 0.2845 0.3055 | 0.3277 0.2417 0.2778
EGB 0.3999  0.6886 0.3365 | 0.3966 0.7475 0.4165
HED 0.3367 0.6681 0.2000 | 0.1975 0.7312  0.2603

IG U S| penalizes this behavior. The values of Fj, Fy, and
Dice are between 0 and 1 with higher scores implying better
performance.

E. Results

Table I summarizes the evaluation scores for all segmen-
tation algorithms considered in this paper. We conducted
parameter scanning for our methods as well as publicly
available methods on the training set to select the setting
that maximize Fjp. Fig. 7 shows the dependency plots of
Fp vs. 0 and Fp vs. p for colorStats and of Fj vs.
7 for interNucDist on the training set. The best para-
meter settings for colorStats are p = 2.5 and ¢ = 7,
and for interNucDist is ¢ = 105 pixels. Additional
parameter scanning results are included in the tables of the
Supplementary Materials, available in the supplementary
files /multimedia tab.

Overall, inNucDist performs the best among all methods
on both the training and testing sets. The improvement by
inNucDist over the second and third best methods (JSEG,
EGB) is statistically significant (t-test p < 0.05) for Fj and F;.
There is no statistically significant difference between the top
methods in terms of Dice metric.

Since the dataset has both well-differentiated and poorly-
differentiated images, colorStats does not perform as
well. However, compared to crisp-bound and gPb, the
two spectral graph segmentation methods, colorStats has
better Fj, and F, scores over both training and testing datasets.
The improvement of colorStats over crisp-bound and
gPb on F, is statistically significant (p < 0.05). Note that both
of our methods significantly outperformed the deep learning
based method HED.

Fig. 8 illustrates segmentation results obtained from apply-
ing various algorithms on two representative images. Segmen-
tation results for all images are available in the supporting
documents. For display purposes, the parameter setting for
each algorithm was optimized to achieve the highest F}, score
over the database of images. For each image, we report both
Fp, and F, scores. In Fig. 8 top, which is the same one as
in Fig. 1, colorStats result looks very similar to the one
annotated by non-experts. Both results miss fat boundaries
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Fig. 8. Segmentation results for two representative images with boundary and region metrics displayed. Segmentation results for the entire dataset

are available in the supporting documents.

which lowers Fj, score, while account for the majority of the
foreground segments which increases F, score. inNucDist
is able to detect the majority of histological structures, but
picks up some islands in the stroma which are histologically
indeterminate, leading to low F; score.

GraphRLM and NCut divide the image into homogeneous
regions but do not group them into histological structures
(low F; scores) or respect structural boundaries (low Fj, score).
GlandSeg misidentifies ducts and undersegment other struc-
tures, leading to both low F, and F; scores. gPb introduces
some false positive edges within blobs of fat and across stroma
but accurately traces the boundaries of histological structures
and thus it has higher F, score than colorStats and
higher F, score than inNucDist. Crisp-bound focuses
on detecting boundaries between white segments and other
color segments. It misses most boundaries of histological
structures and undersegments foreground, resulting in low Fj
and F, scores. JSEG undersegments the invasive carcinoma
blob and misses boundaries between the two normal ducts
in the upper left corner, leading to low F; and F, scores.
MeanShift tends to oversegment but respects structural
boundaries. EGB picks up small spurious islands but mostly
in the stroma background and hence it has decent F, score.
F, scores clearly reflect the perceptual quality of segmentation
results.

In Fig. 8 bottom, colorStats carves out long and
thin islands next to the large cancer segment (low Fjp),
but preserves structural integrity of all foreground segments
(high F}). inNucDist slightly oversegments the large cancer
blob and hence scores lower than colorStats on F,.
gPb and crisp-bound more severely under-segment the
image, while white holes inside the invasive cancer patch
are mistakenly identified as lumens by GlandSeg. EGB
punctures holes in the largest segment that it picks up, thus
scoring high in F, but low in Fp. JSEG oversegments the
cancer patch and has lower F; score than EGB.

With our current non-optimized version of the code in
Matlab and Java, colorStats takes roughly 40 seconds to
segment an image of size 512 x 512 on a laptop with 16GB
memory and interNucDist takes roughly 15-45 seconds
on an image of size 2K x2K. In fact, most methods take
roughly the same amount of time (45 seconds-1 minute) on
images of size 512x512. In addition, we have also tested our
methods on both high resolution (2K x2K') and low resolution
images (512x512) and observed no significant changes in per-
formance. However, when it comes to scaling these methods
to WSIs, the spectral methods are difficult to scale unless
more optimized eigensolvers become available. On the other
hand, we have scaled interNucDist to work on WSIs of size
20k x 20k where it takes roughly 7 minutes on a single i7
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core machine with 64GB memory. With parallelization, the
average running time reduces to 100 seconds per image of
size 20K x 20K (results not shown).

IV. DISCUSSION

In this paper, we proposed two graph-based image seg-
mentation methods based on local spatial color and nuclei
neighborhood statistics. In colorStats, we analytically
modeled the spatial color statistics between neighboring pixels
using bivariate von Mises mixture models in the H&E opti-
mized color space. In inNucDist, we segmented histo-
logical structures using nuclei neighborhood statistics in the
form of pairwise distances between superpixels. Working with
232 expertly annotated breast H&E images, we demonstrated
the ability of our algorithms to identify significant histological
structures, and thus enable the understanding of their spatial
relationships, and perhaps infer the status of the disease. Our
method inNucDist performs better than the state-of-the-art
methods and the improvement is statistically significant.

Segmentation methods adapted from the domain of natural
images (JSEG, EGB, crisp-bound, gPb) performed much
better than methods that have been specifically designed for
H&E images (GraphRLM, GlandSeg). Notably, non-experts
outperformed all the algorithms considered here, except for our
method inNucDist on the region score. We observed that
non-experts tend to annotate more segments than experts. This
is reasonable since experts with more training in histopathol-
ogy are able to group together segments into relevant histo-
logical structures while non-experts focus on grouping pixels
into coherent segments, without the histological knowledge.

colorStats performed better than gPb and
crisp-bound, demonstrating that our H&E optimized
color space and von Mises modeling offered a more effective
affinity measure for spectral segmentation. Note that our
method colorStats uses only one feature, while gPb
uses 36 color and texton features and crisp-bound uses
six La*b* and variance features. We presented results using
only one feature (H&E-hue), but this can be easily extended
to incorporate more features. inNucDist uses only one
feature, namely a threshold on pairwise superpixel distances,
yet performs better than GraphRLM, which uses sixteen
graph run length features.

In solving the challenging task of segmenting histological
structures, we have encountered two major hurdles. First and
foremost is the difficulty in obtaining the ground truth. In addi-
tion to being cost-prohibitive, curating ground truth annota-
tions requires extensive communication with the collaborating
pathologists because there are inevitable questions regarding
what and how histological structures should be annotated.
We recruited two pathology trainees and one practicing breast
pathologist for the early proof-of-concept work in this paper.
We hope that the publication of this paper will encourage a
collaborative annotation effort among pathologists.

The second challenge is the use of appropriate metrics for
performance evaluation. The current evaluation framework for
natural image segmentation algorithm matches the algorithmic
output with ground truth boundaries, but in clinical work, not

every histological structure can be identified with certainty;
especially in cancer images, the boundaries of the tumor,
which are inherently weak, become more ambiguous that even
expert pathologists find it hard to segment. When the ground
truth is unidentifiable, this type of evaluation measure could
severely misjudge the performance of the algorithm. It is
the reason why we proposed a histologically relevant region
metric, focusing on evaluating important histological structures
involving clumps of nuclei and fat. Other metrics that are com-
monly in use in biomedical image analysis literature [12] are
component-specific and are not applicable to the approaches
presented here for segmenting a broad class of structures in
breast tissue images.

One limitation of our methods is that the normalization
step can obfuscate the histological structure identities. For
example, lymphocytes and mitotic nuclei typically stain darker
than epithelial nuclei. After normalization, their color appear-
ances can become more similar, thus, leading to a loss of
information in their identities. However, color normalization
is crucial for downstream analysis. This problem is true
for any normalization methods in the literature and can be
mitigated by analyzing the original color images overlayed
with segmentation boundaries.

One of our end goals is to build a computer assisted
diagnostic system for pathologists that parses WSIs and
triages relevant histological structures for rapid diagnosis.
Tumor diagnosis and classification is a difficult, labor-intensive
task that requires the expertise of highly trained physicians.
A computer-assisted workflow could tremendously reduce
the amount of pathologist effort required to do this diag-
nostic work, which would be of great value to health-
care organizations. Further, tumor biology is complex and
a computational approach may empower pathologists to
glean additional prognostic information from images, than
is currently possible. Another important goal is to enable
molecular-profiling based precision medicine approaches that
build spatial interaction maps combining protein, DNA/RNA
biomarkers.

As future work, we can automate the color preprocessing
step to be completely unsupervised using the recently proposed
non-linear tissue-component separation method [35]. In addi-
tion, we can improve the performance of our segmentation
algorithms, by combining multi-scale methods with higher-
order statistics in H&E-hue space. While this study attempts
to identify segments with distinct spatial statistics, assigning
them labels (e.g., normal duct, carcinoma in situ) will fall
under the challenging task of tissue recognition. We can poten-
tially rank histological structures segmented by our algorithms
from the most to least abnormal (cancer, atypia, inflamma-
tion, etc.). Our approach also raises the possibility of using
spatial statistics in recognizing tissue origins. Finally, we will
initiate open-source collaborative efforts among pathologists
for annotating H&E images.
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