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Spatial domain analysis predicts risk of colorectal
cancer recurrence and infers associated tumor
microenvironment networks
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An unmet clinical need in solid tumor cancers is the ability to harness the intrinsic spatial

information in primary tumors that can be exploited to optimize prognostics, diagnostics and

therapeutic strategies for precision medicine. Here, we develop a transformational spatial

analytics computational and systems biology platform (SpAn) that predicts clinical outcomes

and captures emergent spatial biology that can potentially inform therapeutic strategies. We

apply SpAn to primary tumor tissue samples from a cohort of 432 chemo-naïve colorectal

cancer (CRC) patients iteratively labeled with a highly multiplexed (hyperplexed) panel of 55

fluorescently tagged antibodies. We show that SpAn predicts the 5-year risk of CRC recur-

rence with a mean AUROC of 88.5% (SE of 0.1%), significantly better than current state-of-

the-art methods. Additionally, SpAn infers the emergent network biology of tumor micro-

environment spatial domains revealing a spatially-mediated role of CRC consensus molecular

subtype features with the potential to inform precision medicine.
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Colorectal Cancer (CRC) is the fourth most common type
of cancer and the second leading cause of cancer-related
deaths worldwide1. This multi-factorial disease like other

carcinomas, develops and progresses through the selection of
epithelial clones with the potential to confer malignant pheno-
types in the context of a reciprocally coevolving tumor micro-
environment (TME) comprising immune and stromal cells2,3.
CRC patients are staged using the well-established tumor-node-
metastases (TNM) classification4,5. However, there is significant
variability in patient outcomes within each stage. For example,
CRC will recur in up to 30% of Stage II patients despite complete
tumor resection, no residual tumor burden and no signs of
metastasis6. In contrast, more advanced CRC has been known to
show stability or indeed even to spontaneously regress6,7.

The intrinsic plasticity of the TME underlying this variability
in outcome is controlled by complex network biology emerging
from the spatial organization of diverse cell types within the TME
and their heterogeneous states of activation8–10. The important
role of the TME in CRC progression and recurrence has recently
been highlighted by the identification of four consensus mole-
cular subtypes (CMS)11,12, functional studies defining the critical
role of stromal cells in determining overall survival13, and the
development of Immunoscore®14 which quantifies tumor-
infiltrating T lymphocytes in different regions of the tumor and
associates their infiltration with CRC recurrence14,15. However
the TME can be further harnessed to significantly improve CRC
prognosis through the identification of biomarkers mechan-
istically linked to disease progression and the development of
novel therapeutic strategies.

Deeper understanding of the TME may arise from imaging
methods capable of labeling >7 cellular and tissue components in
the same sample (hyperplexed16 (HxIF) fluorescence and other
imaging modalities)16–20. To fully extract the intrinsic informa-
tion within each primary tumor we have developed a spatial
analytics computational and systems pathology platform
(SpAn) applicable to all solid tumors to analyze the spatial rela-
tionships throughout TME signaling networks. SpAn constructs a
computationally unbiased and clinical outcome-guided statistical
model enriched for a subset of TME signaling networks that are
naturally selected as dependencies of the corresponding malig-
nant phenotype. Traditionally, advances in experimental and
systems biology have been made by identifying associations
between differential biomarkers expressions/correlations, or
clusters in T-SNE plots, with particular outcome-specific
malignant phenotypes, such as cancer progression or recurrence
phenotypes. Instead of using this association-driven
paradigm, SpAn introduces an outcome-driven approach to
predict 5-year risk of CRC recurrence in patients with resected
primary tumor that also enables inference of recurrence-specific
network biology.

Results
Hyperplexed immunofluorescence imaging of tissue micro-
arrays. The acquired data were generated using GE Cell DIVETM,
also known as MultiOmyx19 (GE Healthcare, Issaquah, WA),
hyperplexed16 immunofluorescence (HxIF) imaging and image
processing workflow instrument. Cell DIVETM can perform
hyperplexed imaging of greater than 60 biomarkers via sequen-
tially multiplexed imaging of 2–3 biomarkers plus DAPI nuclear
counterstain through iterative cycles of label–image–dye inacti-
vation visualized in Supplementary Fig. 119 (see the “Methods”
section for more details). Extensive validation of this approach
has demonstrated that a majority of epitopes tested are extremely
robust to the dye-inactivation process. The biological integrity of
the samples was preserved for at least 50 iterative cycles19.

In this study we use 55 biomarkers, which include markers for
epithelial, immune, and stromal cell lineage, along with those in
categories, which include (1) biomarkers sampling the network
biology of signaling pathways, (2) biomarkers associated with
extracellular transport and metabolism, (3) biomarkers associated
with tumor suppressive potential, (4) biomarkers associated with
oncogenic potential, (5) biomarkers associated with cell–cell
adhesion, cellular and stromal structure, (6) biomarkers asso-
ciated with post-translational modifications (PTM), and (7)
biomarkers associated with cell types and their states. They are
detailed in Supplementary Fig. 2, with additional details in
Supplementary Table 1. Figure 1a shows the HxIF image stack of
a 5-µm thick and 0.6-mm wide tissue microarray21 (TMA) spot
from resected primary tumor of a Stage II CRC patient labeled
with the 55 biomarkers plus DAPI. Figure 1b highlights a sub-
region of this patient TMA spot enabling optimal visualization of
the 55 HxIF biomarker images resulting from the iterative
label–image–chemical-inactivation cycles.

Cell DIVETM was employed to generate HxIF image stacks of
FFPE tissue microarrays from resected tissue samples from 432
chemo-naive CRC patients at single-cell resolution. This 55-
dimensional spatial profiling of the patient-level tumor micro-
environment served as input in our study. The 432 patient cohort
was retrospectively acquired from Clearview Cancer Institute of
Huntsville Alabama, and included Stage I through III CRC
patients, who were followed between the years of 1993 and
2002. As shown in Supplementary Table 2, the median patient age
and gender proportions were similar across all stages, with CRC
recurring in 65 patients. The outcome distribution of the patients
and their clinical attributes across the CRC stages are detailed in
Supplementary Table 2. The use of chemo-naive (no administra-
tion of neoadjuvant or adjuvant therapies for the 5+ years of
follow-up) CRC patient cohort provides SpAn the opportunity to
interrogate unperturbed primary tumor biology.

Recurrence-guided and spatially informed CRC prognosis.
SpAn performs a virtual three-level spatial dissection of the
tumor microenvironment, by first explicitly decomposing the
TMA into epithelial and stromal regions as detailed in Methods
and illustrated in Supplementary Fig. 3. The cells in the epithelial
region are identified using E-cadherin cell–cell adhesion labeling
and pan-cytokeratin, with individual epithelial cells segmented
using a Na+K+ATPase cell-membrane marker, ribosomal protein
S6 cytoplasmic marker, and DAPI-based nuclear staining. The
resulting epithelial spatial domain of the TMA in Fig. 1a is shown
in Fig. 1c. The remaining cells are assigned to the stromal domain
and are visualized in Fig. 1d. These stromal cells have diverse
morphologies19. Based on the epithelial and stromal domains,
SpAn also identifies a third epithelial-stromal domain, shown in
Fig. 1e, to explicitly capture a 100 µm boundary wherein the
stroma and malignant epithelial cells interact in close proximity.
Together these three intra-tumor spatial domains comprise the
virtual three-level spatial dissection of the tumor microenviron-
ment that forms the basis for the SpAn spatial model overviewed
in Fig. 1f and detailed in Fig. 2.

Utilizing expression of the 55 hyperplexed biomarkers, SpAn
first computes the corresponding 55 mean intensities and 1485
Kendall rank-correlations as features characterizing each of the
three spatial domains (see Fig. 2a). The mean intensity captures
the average domain-specific expression profile of each biomarker,
while the Kendall rank-correlations22 measure strength of
association between any two biomarkers without presuming
linearity (see Methods for details). Importantly, computation of
domain-specific rank-correlations as explicit features for SpAn is
used in place of the more typical approach of implicitly
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incorporating correlations as interactions between covariates
(average biomarker expressions) within the prediction model23.
These explicit features not only detect the association between
two biomarkers presumably mediated by intracellular and
intercellular networks all within the same spatial domain but
also by mediators (e.g., exosomes) derived from another
spatial domain. As an example, SpAn finds enrichment of

KEGG ‘microRNAs in cancer’ pathway in the epithelial and
epithelial-stromal domains (see below), while concurrently
selecting correlation between CD163 and PTEN as a feature
in the stromal domain for recurrence prognosis (see Fig. 3).
As has been reported in gastrointestinal cancers, tumor cell-
derived exosomal miRNAs mediate crosstalk between tumor
cells and the stromal microenvironment, and induce polarization

Hyperplexed immunofluorescence tissue

microarray spot

Epithelium-domain

a

Epithelial-stromal domainStromal-domain

b

c

f

ed

Fig. 1 Hyperplexed immunofluorescence imaging based spatial analytics (SpAn) platform. a Hyperplexed image stack of a TMA spot generated by
iteratively multiplexed (Fig. S2) HxIF imaging using the Cell DIVE platform19. Scale bar: 100 µm. b Close-up view of a TMA region in (a) outlined in white
(~110 µm by 110 µm), labeled with 55 biomarkers (plus DAPI nuclear counterstain) that include epithelial, immune and stromal cell lineage, subcellular
compartments, oncogenes, tumor suppressors, and post-translational protein modifications described in detail in Supplementary Table 1. Hyperplexed
imaging is implemented via iterative label–image–dye-inactivation immunofluorescence cycle (see Methods and Fig. S2). Scale bar: 20 µm. c–e Dissection
of the TMA spot into three spatial domains (epithelial, stromal, and epithelial-stromal domains) identified and segmented using structural biomarkers (see
Methods and Fig. S3). f For each of the three spatial domains both expressions (scale range: 1 through 12 on a log2 scale) of the 55 biomarkers and their
Kendall rank-correlations (scale range: −1 through +1) both within and across the cells together defined the domain-specific features. L1-norm based
penalized Cox regression was used for model selection, while L2 penalty was used for final model parameter (coefficients) estimation. The stability of the
model was tested at the 90% concordance level, and the parameters were reevaluated for final construction of the SpAn spatial model.
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of the macrophages to the anti-inflammatory and tumor-
supportive M2 state via activation of the PTEN-PI3K signaling
cascade under hypoxic conditions resulting in enhanced meta-
static capacity24,25.

SpAn then uses CRC-recurrence-guided learning to determine
those specific spatial-domain features that constitute the optimal
subset for prognosis via model selection based on L1-penalized
Cox proportional hazard regression method (Fig. 2b)26,27. See
Methods for details on penalized regression, Supplementary Fig. 4

for validity of the proportional hazard assumptions, and
Supplementary Fig. 5 for determination of threshold for
concordance with recurrence outcome. A follow-up analysis of
the selected features is performed to test the stability of their
contribution to recurrence prognosis through testing the stability
of the sign of the corresponding coefficients at the 90% threshold.
The final domain-specific features are shown in Fig. 3 and
Supplementary Table 3 with additional details described in
Methods.

Intensity-based features

Correlation-based features

Correlation-based selected features

Stromal-domain Epithelial–stromal domain

Stromal-domain Epithelial–stromal domain
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Fig. 2 SpAn domain-specific feature selection. a Individual mean protein-expression intensity profile depicted as a vector and pairwise Kendall rank-
correlations between protein expressions—visualized as a matrix for each of the three spatial domains. The protein expressions are shown in log scale. To
prevent inclusion of false-positive protein expression, only intensities above the 85th percentile were considered as expressions and used to compute the
correlations (see Methods). b Features, including both expressions and correlations, selected by SpAn based on L1-penalized Cox regression used for
model selection. The selected features were consistently concordant at the 90% level with the recurrence outcome.
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The coefficients that control the contribution of the selected
features to each of the domain-specific models for assessing
recurrence outcome were learned under L1 penalization and their
values are, therefore, dependent on all 1540 features. To remove
this dependence, SpAn relearns each of the three domain-specific
model coefficients using L2 penalty in our penalized Cox
regression model with only the optimally selected features as
input. This L2-regularized learning allows SpAn to estimate
optimal contribution of the selected features that are 90%
concordant with the recurrence outcome. The resulting
domain-specific coefficients are shown in Supplementary Fig. 6.
As detailed in Methods, SpAn combines these domain-specific
features weighted by their corresponding coefficients into a single
recurrence-guided spatial-domain prognostic model, whose
performance is shown in Fig. 4a. The results were obtained by
bootstrapping (sampling with replacement) patient dataset to
generate 500 pairs of independent training and testing sets using
stratified sampling that ensured the proportion of patients in
whom cancer recurred in each of the 5 years remained the same

in each bootstrap. For each bootstrap, SpAn used the training
data for learning and the independent testing data to compute the
receiver operating characteristic (ROC) curve. These ROC curves
are shown in Fig. 4a along with the mean ROC curve. The mean
area under the curve (AUC) for bootstrapped ROC curves is
88.5% with a standard error of 0.1%, demonstrating the stable
performance of SpAn. We also maximized Youden’s index28 to
identify the clinically relevant operating point on the ROC curves
that minimized the overall misdiagnosis rate. Figure 4b shows the
resulting sensitivity and specificity values for all bootstrap runs,
with mean values, respectively, of 80.3% (standard error of 0.4%)
and 85.1% (standard error of 0.3%). High specificity limits SpAn
from misidentifying no-evidence-of-disease patients as being at
high risk of CRC recurrence, while at the same time good
sensitivity allows SpAn to not miss high-risk patients. This is
emphasized by a high positive likelihood ratio value of 7.2
(standard error of 0.23), which quantifies the large factor by
which odds of CRC recurring in a patient go up, when SpAn
identifies the patient as being at risk of CRC recurrence. At the
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visualized in black in the three bar graphs. Features selected in Fig. 2b that did not meet this criterion are shown in red. The blue solid line indicates the
90% threshold.
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same time a small negative likelihood value of 0.22 (standard
error of 0.003) quantifies the decrease in odds of CRC recurrence
in a patient when SpAn identifies the patient as being at low
risk. Finally, these results are brought together in Fig. 4c, which
show the large separation in recurrence-free survival curves of
patients identified by SpAn at low and high risk of 5-year CRC
recurrence.

Validating the rationale behind SpAn. The rationale behind our
“virtual-dissection followed by combination of the three specific
spatial domains” approach is motivated by the acknowledged

active role of the microenvironment and its spatial organization,
and the differential role played by the epithelial and stromal
domains in tumor growth and recurrence2,13,29. We tested the
validity of this rationale within the context of our data by com-
paring the performance of SpAn with the null model, which is
based on recurrence-guided learning of the spatially undissected
patient TMA spot. We note that the learning procedure for the
null model was identical to the domain-specific learning within
SpAn. In addition, we also compared the performance of SpAn
with four other models that included a clinical model, biomarker
expression model, biomarker expression+ clinical model, and
SpAn+ clinical model. The input into the clinical model were
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CRC recurrence in patients with resected CRC primary tumor. The plot shows ROC curves, rendered in different colors for improved visual contrast, for
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showing the stable stage-based clinical performance of SpAn. The black-solid line indicates an AUC of 50% corresponding to random guessing. f Stable
temporal performance of SpAn illustrated by the time-dependent AUC values plotted as a function of time in years. The 95% confidence interval computed
using the 500 bootstraps is also shown by the yellow shaded area around the mean time-dependent AUC values depicted by the black-solid curve. The 0.8
and 0.5 AUC values are shown for reference by the purple-dashed and black-solid lines, respectively.
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clinical features associated with age, gender and TNM stage, and
the learning procedure was based on Cox proportional hazard
regression30. The biomarker expression model input were bio-
marker expression intensities alone and the learning procedure
was identical to SpAn. The biomarker expression+ clinical, and
SpAn+ clinical models, respectively, combined biomarker
expression and SpAn with the clinical model. Figure 4d shows the
AUC violin and boxplots of the bootstrapped ROC curves
achieved by each model. The figure illustrates the improvement
SpAn achieves over the performance of other models. To quantify
the statistical significance of this improvement, we performed
Dunn’s pairwise multiple comparison post hoc analysis between
the models based on non-parametric Kruskal–Wallis test31. Our
analysis shows that the improvement in performance achieved by
SpAn over all other models is statistically significant at the 99%
confidence interval with a p-value much less than 0.005 (Sup-
plementary Table 4). We specifically note that this is true for
SpAn performance in comparison to the null model based on the
spatially undissected patient TMA spot without spatial-domain
context. This improved performance of SpAn highlights the
importance of explicitly modeling the epithelial, stromal and
epithelial-stromal spatial domains associated with the TME.
Interestingly, beyond supporting our rationale, this comparative
test also demonstrates that joint utilization of biomarker
expressions and their correlations results in superior performance
of both SpAn and its null model over clinical features and bio-
marker expressions alone (also see Supplementary Fig. 7). We
note that published state-of-the-art approaches that include
Immunoscore®14,15 rely on biomarker expressions. Finally, we
observe that the marginal performance improvement over SpAn
achieved by including clinical features with SpAn—the SpAn+
clinical model—is not statistically significant with a p-value
of 0.082.

SpAn predicts 5-year recurrence in Stages I–III CRC patients.
The ability to identify patients in whom CRC will recur, especially
for those patients in Stages II and III of tumor progression is
highly clinically relevant. Figure 4e shows that, although the
modeling of SpAn is TNM stage-independent, SpAn can con-
sistently identify patients in whom risk of CRC recurrence is high
for Stages I through III, with mean AUC of bootstrapped ROC
curves for the three stages, respectively, being 82.1%, 89.4%, and
88.6%. Standard error of these mean AUC values, respectively, is
0.4%, 0.2%, and 0.2%, demonstrating the stability of SpAn per-
formance. Although the overall performance across all three
stages is highly significant with the potential of improving
prognosis, the relative reduction in Stage I performance may be a
consequence of the small cohort of only ten patients in Stage I
with CRC recurrence.

The ability of SpAn to predict risk of recurrence in individual
patients from all three Stages, is relevant in the context of
administering adjuvant therapy, especially for Stage II patients.
Current guidelines for treating Stage II CRC patients from The
National Comprehensive Cancer Network (NCCN)32, the Amer-
ican Society of Clinical Oncology (ASCO)33, and the European
Society of Medical Oncology (ESMO)34 do not recommend
routine adjuvant chemotherapy for Stage II patients, but do state
that it should be considered for sub-population of Stage II
patients that are at higher risk and might benefit from being put
on adjuvant therapy regimen35. The personalized prognostic
potential of SpAn implies that we could triage Stage II patient
cohorts into low and high-risk groups, with the latter being
further considered for therapy. Furthermore, SpAn could help
with postoperative surveillance of high-risk Stage II patients with
more intensive follow-up regimes36.

While 20–30% of Stage II CRC patients are at high risk of
recurrence, there are Stage III patients that have good prognoses
of stable 5-year recurrence-free survival. SpAn, therefore, could
also be used to fine-tune their postoperative surveillance and
adjuvant chemotherapy regimens.

Prognostic performance of SpAn remains stable over 5 years. A
majority of CRC recurrence occurs in the first 5 years, with 90%
occurring in the first four37,38. We, therefore, consider the time-
dependent performance39 of SpAn during the first 5-year period.
Figure 4f plots the AUC for time-dependent ROC performance.
The performance of SpAn in predicting risk of recurrence
remains consistent and stable (95% confidence interval shown)
with only a small, and gradual reduction in time-dependent AUC
values as we move away from the resection and imaging time-
point. This result suggests SpAn captures the critical biological
underpinnings of recurrence in the primary tumor. Supplemen-
tary Fig. 8 shows the time-dependent AUCs for domain-specific
temporal performance of SpAn.

SpAn infers spatial-domain networks underlying CRC recur-
rence. Given the high prognostic performance of SpAn, we took a
systems perspective to understand and to explain the underlying
network biology responsible for this performance within each of
the three spatial domains. For each domain, we quantified the
unique associations between biomarkers included in the selected
features through partial correlations between every biomarker
pair, when controlling for other biomarkers as described in
Methods. This approach was performed for all patients. The
resulting partial correlation for every biomarker pair was sepa-
rated into two groups according to no-evidence-of-CRC and
CRC-recurrence patient cohorts and the information distance
based on Jensen–Shannon divergence40 was computed between
them (see Methods for more details). The resulting domain-
specific distance matrices, shown in Fig. 5a–c, define associated
graphs with the nodes being the biomarkers and edge
weights quantifying the differential change, the information dis-
tance, in biomarker association between patients in which
CRC recurred and those in which there was no evidence of
recurrence. The stronger the weights, the larger the distance,
and the more significant the differential change in association
between the two markers for the two patient cohorts. We defined
the graphs generated by the distance matrices thresholded at the
99th percentile as the spatial-domain networks that were
most significant for CRC-recurrence prognosis. Figure 5d–f
shows the resulting networks for the three spatial domains
that reveal the heterogeneous nature of the cell populations and
signaling pathways leveraged by SpAn in CRC-recurrence
prognosis.

The epithelial-stromal domain network is comprised of three
dominant subnetworks associated with tumor-invading T lym-
phocytes41, disruption in DNA mismatch repair cellular process,
and the role of cancer-associated fibroblasts (CAFs) in the
desmoplastic microenvironment as indicated by the strong edge
weight between smooth muscle actin (SMA) and collagen IV.
CAFs are well-known to promote EMT42 and the differential
expression of beta-catenin and phosphorylated-MET in Fig. 5f is
also consistent with the epithelial-stromal domain supporting the
mesenchymal phenotype43. These features have also been
identified with those distinguishing consensus molecular subtype
(CMS) 4 that is associated with a poor prognosis in comparison
to the other 3 subtypes in the transcriptome-based classifica-
tion11,12. Interestingly, the epithelial-stromal spatial domain also
reveals the presence of DNA mismatch repair network that has
been associated with regulation of T-lymphocyte infiltration, a
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prominent feature of CMS1. Thus, the epithelial-stromal spatial
domain associated with recurrence combines two features, where
in contrast, each alone is associated with two different CMS
subtypes. This theme extends to the epithelial spatial domain in
Fig. 5d, where metabolic deregulation, a prominent feature of
CMS3, and DNA mismatched repair, a hallmark of CMS1 are

evident. The association of these two subnetworks in the
epithelial domain has the potential to promote tumor cell growth
while escaping immune surveillance. Finally, we observe a
prominent tumor associated macrophage (TAM) network in
the stromal spatial domain (Fig. 5e). TAM polarization toward
the M2 phenotype regulated by AKT/PTEN has been associated
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with poor prognosis in CRC that could result from their
immunosuppressive and matrix remodeling phenotypes25.

Spatial-domain networks reveal domain-specific CRC network
biology. We used STRING44 and KEGG45 databases to identify
pathways enriched by biomarkers within each of the spatial-
domain networks and further corroborate their connections to
prominent features in the CMS subtype classification. Figure 6
shows the pathways enriched in each of the three spatial domains,
and further identifies those that are common to a majority of at
least two of the three spatial domains. Since their identification is
based on the spatial-domain networks we computationally iden-
tified as significant for CRC-recurrence prognosis, these pathways
play a differentially important role in prognosis of CRC
recurrence.

CMS2 tumors are associated with chromosomal instability
pathway and enrichment of genes associated with cell cycle and
proliferation. Interestingly, both Pi3k-Akt signaling and cell cycle
pathways enriched in our analysis are associated with CMS2
tumor subtype, with almost 60–70% of CRCs associated with
dysregulation of Pi3k-Akt signaling pathways46.

Tumors associated with the CMS4 mesenchymal phenotype
show upregulated expression of genes involved in epithelial-to-
mesenchymal transition along with increased stromal invasion,
angiogenesis and transforming growth factor-β (TGF-β) activa-
tion11,12. Interestingly, proteoglycans in cancer, focal adhesion
and microRNAs in cancer pathways enriched in our analysis
enable the mesenchymal phenotype. For example, non-coding
microRNAs both regulate and are targets of upstream regulators
for modulating the epithelial-to-mesenchymal phenotype by
targeting EMT-transcription factors such as ZEB1, ZEB2, or
SNAIL47. Similarly, the focal adhesion pathway through the
integrin family of transmembrane receptors mediates attachment
to the extracellular matrix, and when dysregulated promotes cell
motility and the mesenchymal phenotype48,49. Furthermore,
extracellular and cell surface proteoglycans with their interaction
with cell surface proteins such as CD44 have been known to
promote tumor cell growth and migration50,51.

Our analysis suggests that by capturing correlation-based
crosstalk between heterocellular signaling pathways, SpAn
leverages the interconnections between the subtypes for a high
performing CRC-recurrence prognosis and reveals a synergistic
role of the CMS subtypes in CRC progression and recurrence. We

Fig. 5 SpAn derived spatial-domain networks. a Epithelial domain, b Stromal domain, and c Epithelial-stromal domain Jensen–Shannon divergence
matrices that show the information distance of partial correlations (computed for biomarkers selected by recurrence-guided SpAn feature selection and
stability analysis) between patients in the no-evidence-of-CRC and CRC-recurrence cohorts. d Epithelial domain, e Stromal domain, and f Epithelial-stromal
domain spatial-domain networks obtained by thresholding the corresponding spatial-domain information distance matrices at the 99th percentile, which
identify differential change most significant for CRC-recurrence prognosis. (The graphical and color rendering is to ensure ease of visualization.) All three
spatial-domain networks include disconnected subnetworks with isolated nodes. These nodes correspond to biomarkers selected by SpAn as indicated in
blue in Fig. 3. Biomarker expression is an intrinsic property that, unlike correlations, does not describe relationships between different biomarkers, and
therefore, is naturally expressed by an isolated node without any connecting edge.
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note that the ability of SpAn to leverage these interconnections is
due to the spatial-context-preserving sampling of a diverse set of
CRC-relevant biomarkers enabled by HxIF imaging.

Interestingly, this network biology paradigm also shows
enrichment of pathways specific to a single spatial domain whose
oncogenic or tumor suppressive roles in CRC is an active area of
research but whose differential role in CRC recurrence has not
been widely studied. For example, in the epithelial domain our
analysis shows the enrichment of Thyroid hormone signaling
pathway that has been associated with a tumor suppressive role in
CRC development52,53. In contrast, the bacterial invasion path-
way, enriched in epithelial-stromal boundary region, has been
implicated in the oncogenic role of the colonic microbiome in
CRC development54,55.

Our analysis also reveals enrichment of certain other pathways,
such as the hypoxia-inducible factor 1 (HIF-1), human epidermal
growth factor receptor 2 (HER2) and T-cell receptor signaling
pathways in the epithelial domain. Hypoxia is typical in many
solid tumors in CRC with HIF-1 regulating tumor adaptation to
hypoxic stress56. Alterations in Her-2 signaling, either through
genomic amplification or mutations is tumor promoting, and
anti-HER2 therapies for preventing CRC recurrence and are a
focus of on-going work57. We finally note that MAPK and PI3K-
AKT signaling cascades are implicated in many of the above
discussed pathways.

Discussion
This study highlights the importance of spatial context of the
primary tumor microenvironment in conferring distinct malig-
nant phenotypes such as recurrence in CRC. We show how a
computationally unbiased approach can be implemented through
statistical modeling of spatially defined domains leading to a
highly specific and sensitive platform for prognostic and diag-
nostic tests, as well as potentially inferring therapeutic strategies
(Fig. 7). Although type, density and location of immune cells
within CRC tumor samples have previously been utilized to
predict patient outcome58, SpAn is novel in concept and distinct

in approach for a few inter-related reasons. Unlike studies that
are association-based, for example, associating recurrence with
immune profiling of the CRC tumor58, SpAn is an outcome-
driven method that utilizes the recurrence outcome to implement
a systems approach to both predict CRC recurrence in patients
and infer domain-dependent network biology most significant for
this prediction. This outcome-driven systems approach, therefore,
allows formal modeling of CRC recurrence as an emergent phe-
notype of the underlying TME, its spatial context and its mole-
cular and cellular diversity. Furthermore, identifying spatial-
domain networks that capture differential change most significant
for recurrence, allows SpAn to be a hypothesis generating systems
pathology platform that provides testable hypotheses regarding
how spatial association of common networks could potentially
lead to emergent signaling networks that confer malignant phe-
notypes in CRC patients. For example, an epithelial domain
network coupling cell metabolism and DNA repair is consistent
with tumor cell growth at the expense of T-cell exclusion and
functional deficiency11,12 (Figs. 5 and 6). Likewise, the hijacking
of CAFs to support EMT in the context of diminished immune
surveillance in the epithelial-stromal spatial domain42,59,60

(Figs. 5 and 6) and the PI3K/AKT-mediated polarization of
TAMs within the stromal domain (Figs. 5 and 6) can conspire to
facilitate migration of tumor initiating cells to promote both local
and distant recurrence61.

SpAn, when used in combination with a non-destructive
hyperplexed imaging platform such as Cell DIVETM allows
mechanistic hypotheses to be tested through iterative probing of
the same spatial domains with additional biomarkers inferred by
the pathway analyses (Figs. 6 and 7). We expect even more
specific mechanistic biomarkers to emerge based on the iterative
hyperplexed imaging approach that incorporates finer stage-
based focus, thereby reducing the total number of biomarkers
needed for optimal analyses. We will be pursuing this in sub-
sequent studies. This feature of SpAn combined with a hyper-
plexing imaging platform will not only allow refinement of its
prognostic ability, but since the iterative analysis can be poten-
tially conducted in real time with further advances in the
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technologies, it may allow the prognosis to be specific to indivi-
dual patients. Importantly, by enabling the testing of mechanistic
hypotheses in patient samples directly connected to a specific
clinical outcome, SpAn may inform therapeutic strategies to
prevent the outcome. For example, immunotherapy has shown
benefits in microsatellite instable (MSI) CRC patients but remains
refractory in microsatellite stable (MSS) CRC patients62. By
combining non-destructive hyperplexed imaging with iterative
analysis, SpAn has the potential to identify spatial-domain net-
works that are differentially expressed in MSI and MSS CRC
patient cohorts. The next phase of this work will take advantage
of sampling multiple regions of primary tumors with larger
TMAs and/or whole side sections, exploring other spatial analy-
tics ranging from simple to sophisticated spatial heterogeneity
metrics63 and incorporating a combination of protein and nuclei
acid biomarkers64.

The ability of SpAn to exploit spatial context of the tumor
makes it suitable to study cancers that progress via spatially
mediated signaling interactions with their TME. SpAn, therefore,
is applicable to solid tumors including sarcomas, carcinomas, and
lymphomas, which co-evolve with the TME65 of their abnormal
tissue mass. We will pursue applications of SpAn to solid tumors
beyond colorectal adenocarcinoma in subsequent studies. Our
present retrospective study provides the foundation for such
studies in other solid tumors. It also establishes feasibility of
implementing SpAn in prospective studies predicting disease
outcomes in patients with CRC and other malignant solid tumors.
The high specificity and sensitivity of SpAn lies in its ability to
unbiasedly identify emergent networks that appear to be closely
associated and likely to be mechanistically linked to recurrence.
We anticipate that hyperplexed datasets based on multiple ima-
ging modalities will be generated faster and become less expensive
as the technology evolves to become a mainstay tool to analyze
solid tumors.

Methods
Patient cohort and tissue microarray (TMA). As detailed in Gerdes et al.19, the
CRC cohort in this analysis was collected from the Clearview Cancer Institute of
Huntsville Alabama from 1993 until 2002 with 747 patient tumor samples collected
as paraffin-embedded specimens. Tissue microarrays were constructed by Applied
Genomics (later part of Clarient Lab) to facilitate large scale biomarker analysis.
Cores with 0.6-mm diameters from the patient samples were distributed across
seven slides. After quality control measures were taken, 694 TMA patient spots
remained for analysis. Sample attrition was due to insufficient tumor fraction in the
representative TMA core. Of the remaining samples, 450 were chemo-naive CRC
patients that were treated with surgery alone, and the remaining 244 patients were
treated with 5-fluorouracil-based chemotherapy regimens. Four-hundred and
thirty-two chemo-naive patients were used in this study. Supplementary Table 2
details the median age, gender, recurrence, recurrence time, and survival times for
the 432 Stage I–III CRC patients. As can be seen the patient cohort is balanced in
age and gender across the three stages.

Antibody validation. We ensured that the correct biomarker expression was
captured by the imaging system using an antibody standardization process19.
Specifically, antibodies were selected based on their staining specificity and sensi-
tivity, compatibility with the two-step antigen retrieval, and resilience during 1, 5,
and 10 rounds of dye-inactivation chemistry. Depending on the marker, a variety
of specificity tests were conducted including, immunogen peptide blocking before
incubation with tissue, drug-treated fixed cell lines, fixed cell lines with gene
amplification or deletion, phosphatase treatment of samples to verify phospho-
specificity, and visual inspection by expert pathologists of expected localization
patterns. Furthermore, fluorescent dyes were conjugated to the primary antibody at
several initial dye substitution ratios and specificity of each conjugate was verified
and sensitivity compared with levels found in previous experiments. Staining
performance was assessed by expert biologists and poor or non-specific staining
was excluded.

Cell DIVE-based hyperplexed imaging (HxIF) of tissue microarrays (TMA).
The 55 biomarkers plus DAPI nuclear counterstain included in this study are
described in Supplementary Fig. 2 and Supplementary Table 1. HxIF imaging of a
TMA slide was performed using sequentially multiplexed labeling and imaging of

2–3 biomarkers along with DAPI counterstain through a label–image–chemical-
inactivation iterative cycle19 visualized in Supplementary Fig. 1 and detailed in
Supplementary Table 5. Broadly, the supporting information details the hyper-
plexed immunofluorescence workflow with information on iterative cycles of
antibody labeling of single 5 µm formalin-fixed and paraffin-embedded tissue
sections and TMA slides, autofluorescence removal, imaging, and dye inactivation
in tissue. All samples were stained and imaged in a single batch for 2–3 biomarkers
and DAPI at a time.

Image processing and single-cell analysis. DAPI-based nuclear staining was
used to register and align sequentially labeled and imaged TMA spots prior to
downstream image analysis steps19. Autofluorescence was removed from the
stained images19,66, which were then segmented into epithelial and stromal regions
(Supplementary Fig. 3), differentiated by epithelial E-cadherin staining. This was
followed by segmentation of individual cells in both the epithelium and stroma.
Epithelial cells were segmented using Na+K+ATPase-based cell-membrane stain-
ing to delineate cell borders and membrane regions, the cytoplasmic ribosomal
protein S6 for cytoplasm identification, and DAPI stain for nuclear regions.
Protein-expression level and standard deviation were subsequently quantified in
each cell. The epithelial-stromal domain was identified via a three-step process.
First, a tessellation of the patient TMA spot was performed using partially over-
lapping circles with a diameter of 50 µm. Second, only those circles with both
positive and negative E-cadherin staining were retained. Finally, union of these
circles resulted in a contiguous epithelial-stromal domain with a width of 100 µm.

Quality checks and data normalization. Following single-cell segmentation,
several data pre-processing steps were conducted. These included cell filtering, spot
exclusion, log2 transformation and slide to slide normalization. Cells were included
for downstream analysis if their size was greater than 10 pixels at ×20 magnifi-
cation. The hyperplexing process can result in the tissue being damaged, folded, or
lost. Image registration issues can also result in poor-quality cell data. Therefore, a
tissue quality index based on the correlation of that image with DAPI was calcu-
lated for each cell for each round. Only those cells whose quality index equals to or
greater than 0.9 (meaning that at least 90% of the cells overlapped with DAPI) were
included. All the slides for all the biomarkers were adjusted to a common exposure
time per channel. The data were then log2 transformed. A median normalization
that equalizes the medians of all the slides was performed to remove slide to slide
non-biological variability.

SpAn input features. For each of the epithelial, stromal, and epithelial-stromal
spatial domains, SpAn used M= 1540 domain-specific biomarker feature vector f
as input. This input feature vector comprised of (1) mean intensity value of 55
biomarkers averaged across all cells within the spatial domain, and (2) 1485
(=55*54/2) Kendall rank-correlations between all 55 biomarker pairs. Kendall
rank-correlation was chosen as the correlation metric because it is a non-
parametric measure of association between two biomarkers. Moreover, its use of
concordant and discordant pairs of rank-ordered biomarker expression for com-
puting correlation coefficients allows it to robustly capture biomarker associations
in presence of measurement noise and small sample size. Rank-correlation for each
pair of biomarkers was computed for each spatial domain from all cells across the
spatial domain expressing the biomarkers. This approach is distinctly different
from prediction models that typically consider correlations via interactions,
implicit within the models, between mean biomarker intensity expressions—with
the biomarker expressions being the only covariates of the model23. We emphasize
that we did not compute correlations through mean intensity biomarker expression
across the spatial domain, but instead used biomarker expressions across individual
cells of the spatial domain to explicitly compute domain-specific rank-correlation
values between every pair of biomarkers to form the SpAn correlation feature set.

Before computing these two sets of features, SpAn analysis workflow included
an initial intensity threshold step to ensure feature robustness. Specifically, we
computed intensity-based distribution of cell-level biomarker expression separately
for every biomarker across each patient TMA spot. Only intensities above the 85th
percentile on this distribution were considered as biomarker expression and
included in computing the intensity features. This focus on the right-tail of the
intensity distribution was deliberately conservative, and although it might have
potentially excluded low-intensity biomarker expression, it minimized inclusion of
false-positive expressions into the analysis.

Penalized Cox proportional hazard regression. For each spatial domain, SpAn
implemented the Cox proportional hazard model via the partial likelihood function

L βð Þ ¼ QK
k¼1

e
fT
ik

β

� �

P
i2Rk

e
fT
i
βð Þ with the penalty given by

Pλ;α βð Þ ¼ PM
m¼1 λ α βm

�
�

�
�þ 1

2 1� αð Þβ2m
� �

, and α= {0,1}. (The validity of using the
Cox proportional hazard regression model is demonstrated in Fig. S4.) Given
feature vector f as input, the partial likelihood L(β) quantifies the conditional
probability of observing CRC recur in a patient at time tk (proportional to the
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numerator e
fTik β

� �

of L(β)), given the risk that a patient will recur from the set Rk of
patients at risk at time tk (proportional to the denominator

P
i2Rk

eðf
T
i βÞ), over all

time tk, k = 1,…,K, as quantified by the product over time index k. The partial
likelihood is a function of the coefficient vector β, whose penalized estimate is then

used to compute the proportional hazard ratio HR= e fTβð Þ . SpAn computed this
estimate via a two-step process that first selects the parsimonious set of features
required for optimally predicting the risk of recurrence, and then learns the model
predicting the risk of recurrence based on the selected features.

The feature selection step is implemented via L1-penalized (LASSO) Cox
regression where α is set to 1 in penalty Pλ,α(β). LASSO-based L1-penalized model
selection performs feature selection by forcing the coefficients of vector β that play
a minimal role in predicting risk of recurrence to zero. This is done in a principled
manner by minimizing the model deviance along the LASSO regularization
path27,67. The features corresponding to the non-zero coefficients in β are the
features selected by SpAn to define the final functional form of Cox proportional
hazard model. Model learning based on this functional form is performed in the
second step via maximizing the partial likelihood function with L2-regularization
as the penalty, implemented by setting α to 0 in the penalty term27,67. L2-
regularization allows SpAn to learn the Cox proportional hazard model while
avoiding over-fitting. An advantage of this two-step process is the decoupling of
feature selection from estimation of beta coefficient values, resulting in the latter
not being conditioned on the complete set of 1540 features but being dependent
only on the selected features.

To ensure the stability of the selected features, SpAn repeated model selection
over 500 bootstraps, and included only those features that were consistently
concordant at the 90% level with the recurrence outcome. (The rationale for 90%
concordance is discussed in Supplementary Fig. 5.) SpAn next performed a stability
check on the beta-coefficients estimated in the second step. Specifically, the stability
of the coefficient sign in 90% of the 500 bootstrap runs was tested, and only
features that passed this threshold (Fig. 3) were included in the spatial-domain
model. SpAn performed this process independently for each of the three spatial
domains resulting in domain-specific recurrence-guided features (Fig. 3) and their
coefficients (Fig. S6).

SpAn is computationally unbiased. SpAn begins penalized Cox proportional
hazard regression by including the full 1540 features. It then utilizes LASSO-based
shrinkage to parsimoniously optimize the full model along the L1 regularization
path by minimizing model deviance67. By combining this principled shrinkage via
L1-penalized Cox proportional hazard regression, with bootstrapping to establish
the stability of the selected subset of features at 90% concordance with the
recurrence outcome (Supplementary Fig. 5), SpAn avoids typical biases associated
with many model selection approaches based on stepwise variable selection,
backward elimination, and forward selection68. These biases include R2 values
being biased high, F and χ2 test-statistics not having their associated distributions,
p-values being biased toward zero, and standard errors of regression coefficient
estimates being biased low, while absolute values of regression coefficients being
biased high.

SpAn is robust to dataset imbalance. Many machine learning algorithms
underpinning prediction models can potentially result in suboptimal performance
for imbalanced datasets, where the number of resected CRC patients with no
evidence of disease in the first 5 years (low risk) is not similar in number to patients
in whom CRC recurred within the first 5 years (high risk). SpAn, however, is
relatively robust to this imbalance due to its use of Cox proportional hazard model
for predicting 5-year CRC recurrence. Cox proportional hazard model is based on
the hazard function which utilizes the conditional probability of CRC recurrence in
a patient at time t, given a risk set at that time and the knowledge that CRC has not
recurred in the patient until time t27. Therefore, in Cox proportional hazard model
the timing is more critical than the number of recurrences per se. As an example,
consider the hypothetical scenario, where, instead of actual 65 high-risk CRC
patients in the study, all 432 CRC patients in the cohort were high risk, with no
patient at low risk. The Cox proportional hazard model will, in principle, remain
valid because it models the conditional rate of CRC recurrence as a function of time
and not the number of recurrences themselves. However, the SpAn workflow does
ensure that in this study the size of the high-risk CRC patients is large enough for
us to be able to sample high-risk CRC patients in each recurrence risk set corre-
sponding to each of the 5 years. Supplementary Table 6 illustrates a typical stra-
tified sampling result employed by SpAn to construct the training and testing sets.
As can be seen this stratified sampling not only ensures that high-risk patients are
approximately equally distributed between the training and testing datasets, but it
also ensures that high-risk CRC patients are captured in each recurrence risk set
corresponding to each of the 5 years. Thus, SpAn implements a form of risk set
sampling69. It is also instructive to note that, as highlighted by CRC epidemiolo-
gical studies37,38, our CRC patient cohort along with our sampling strategy cap-
tures the real-world trend that a majority of CRC recurrence in patients occurs in
the first 5 years of primary tumor resection.

Spatial model. Each of the three recurrence-guided domain-specific models

defined a hazard risk given by e fTepithelialβepithelialð Þ, e fTstromalβstromalð Þ, and e fTepi�stromalβepi�stromalð Þ
for the epithelial, stromal, and epithelial-stromal domains, respectively. SpAn then

defined the final overall risk of recurrence model as
Q

s2S e
fTs βsð Þ , with S= {epi-

thelial, stromal, epi–stromal}.

Partial correlations and spatial-domain networks. For each spatial domain, the
selected features identified a set of biomarkers specific to predicting risk of CRC
recurrence. SpAn used them to define a space of biomarkers within which partial
correlations between every pair was computed by controlling for confounding
effect of biomarkers not defining the pair70. The process performed on each patient
was as follows: Let the set of biomarkers identified by the selected features be N
(≤55). Using the already computed Kendall rank-correlations between the 55
biomarkers, an N ×N correlation matrix C corresponding to the N biomarkers was
constructed, with small shrinkage-based modification to guarantee its positive
definiteness, and therefore, its invertibility. Next, the N ×N precision matrix P was
computed by inverting C. The partial correlation between any two biomarkers bmi

and bmj within the set identified by the selected features, was then computed using

ρbmi ;bmj
¼ �pbmi ;bmjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pbmi ;bmi
�pbmj ;bmj

p , where pbmi ;bmj
is the (i,j)th element of the precision

matrix P. The partial correlations were performed for all patients and were then
separated into two groups corresponding to patients with no evidence of disease
and those patients in which CRC recurred. Probability distributions of the partial
correlations—on the compact set [−1,1]—within each group were computed and
the information distance between these two distributions was computed using the
Jensen–Shannon divergence. This information distance defines the differential
change in the association—partial correlation—between biomarkers bmi and bmj

in the two patient cohorts. Greater the distance, larger the differential change.
Repeating this process for all N(N−1)/2 biomarker pairs resulted in the informa-
tion distance matrices shown in Fig. 5a–c for the three spatial domains. These
information distance matrices were thresholded at the 99th percentile resulting in
the computationally inferred spatial-domain networks shown in Fig. 5d–f. The high
percentile was chosen to ensure that most discriminative networks are captured.

Enrichment analysis. The STRING database44 was queried with the set of proteins
identified by the spatial-domain networks generated by thresholding the domain-
specific information distance matrices at the 99th percentile, to perform functional
enrichment analysis using Fisher’s exact test with multiple testing correction.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Due to the multi-terabyte size of the dataset, the data that supports the findings of this
study can only be made available upon reasonable request.

Code availability
The computational and systems pathology intellectual property is owned by the
University of Pittsburgh and is exclusively licensed to SpIntellx Inc., Pittsburgh, PA as
TumorMapr™. Use of TumorMapr code requires a licensing agreement with SpIntellx
(info@spintellx.com).
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