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Abstract. High-risk atypical breast lesions are a notoriously difficult
dilemma for pathologists who diagnose breast biopsies in breast cancer
screening programs. We reframe the computational diagnosis of atyp-
ical breast lesions as a problem of prototype recognition on the basis
that pathologists mentally relate current histological patterns to previ-
ously encountered patterns during their routine diagnostic work. In an
unsupervised manner, we investigate the relative importance of ductal
(global) and intraductal patterns (local) in a set of pre-selected proto-
typical ducts in classifying atypical breast lesions. We conducted exper-
iments to test this strategy on subgroups of breast lesions that are a
major source of inter-observer variability; these are benign, columnar
cell changes, epithelial atypia, and atypical ductal hyperplasia in order
of increasing cancer risk. Our model is capable of providing clinically rele-
vant explanations to its recommendations, thus it is intrinsically explain-
able, which is a major contribution of this work. Our experiments also
show state-of-the-art performance in recall compared to the latest deep-
learning based graph neural networks (GNNs).

Keywords: Atypical breast lesions * Prototype-based recognition -
Diagnostic explanations * Digital and computational pathology

1 Introduction

Breast cancer screening and early detection can help reduce the incidence and
mortality rates [19]. Although effective, screening relies on accurate pathological
diagnoses of breast biopsies for more than one million women per year in the
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US [4,18]. Most benign and malignant biopsy diagnoses are straightforward, but
a subset are a significant source of disagreement between pathologists and are
particularly troublesome for clinicians. Pathologists are expected to triage their
patients’ biopsies rapidly and accurately, and they have routines for difficult
or ambiguous cases (e.g., second-opinion consults, additional stains). Still, dis-
agreement remains an issue; while the literature suggests that diagnosis should
be straightforward if diagnostic rules are followed [17], concordance remains elu-
sive in real world diagnosis, reported in one study as low as 48% [4].

Our Approach: In this study, we focus on modeling and differentiating dif-
ficult breast lesion subtypes: atypical ductal hyperplasia (ADH), flat epithelial
atypia (FEA), columnar cell changes (CCC), and Normal (including usual ductal
hyperplasia (UDH) and very simple non-columnar ducts). Our approach orig-
inates from the method that pathologists practice, which is to carefully assess
alterations in breast ducts before making diagnostic decisions [8,10,19]. Pathol-
ogists continually observe tissue patterns and make decisions supported by the
morphology. In doing so, they look at an entire duct (global) and patterns within
portions of the duct (local) striving to generate mental associations with pro-
totypical ducts and/or their parts they previously encountered in training or
clinical practice. We propose an end-to-end computational pathology model that
can imitate this diagnostic process and provide explanations for inferred labels.

We hypothesize that ductal regions-of-interest (ROIs) having similar global
and local features will have similar diagnostic labels and some features are more
important than others when making diagnostic decisions. Our approach is related
to other prototypes-driven image recognition systems that favor visual inter-
pretability [3,6,16].

Contributions: To the best of our knowledge, our work is the first one to: (1)
use a diverse set of concordant prototype images (diagnostic class agreed by all 3
pathologists) for learning, (2) characterize clinically relevant global and local prop-
erties in breast histopathology images, and (3) provide explanations by measuring
the relative importance of prototype features, global and local, for the differential
diagnosis of breast lesions. We also show that our approach facilitates diagnostic
explanations with accuracies comparable to the state-of-the-art methods.

2 Related Work

Although there have been numerous efforts in using prototypes for scene recog-
nition [3,6,16], to date, this idea has not been explored to classify breast lesions.
One of the first studies to detect high-risk breast lesions was proposed in [20]
which was based on encoding cytological and architectural properties of cells
within the ducts. The work in [12] used structural alterations of the ducts as
features to classify breast lesions into benign, atypia, ductal carcinoma in-situ
(DCIS), and invasive. A different approach was proposed in [13], where the
authors used analytical models to find clusters within ROIs with strong his-
tologically relevant structures. However, their approach lacked a good learning
strategy to infer the diagnostic label from these clusters. Further, two recent
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studies approached this problem using attention-based networks to generate
global representation of breast biopsy images [11] and biological entity-based
graph neural networks (GNNs) [14] (also tested as a baseline method in Table 2).
Both methods were tested on an unbalanced dataset like ours and both reported
low performance measures in detecting high-risk lesions.

3 Methodology

3.1 Machine Learning Framework

In this paper, we propose an end-to-end computational pathology system that
models the entire duct (global) and the patterns occurring within selective por-
tions of the duct (local) with the goal of generating associations with similar ducts
and/or parts (prototypical). We hypothesize that images with one or more ducts
having similar global and local features will have stmilar diagnostic labels and some
features are more important than others when making diagnostic decisions. We will
first introduce a composite mapping function to learn the relative importance of
global and local features in a prototype set P for differential diagnoses:
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Here h(x;P) captures the association of a previously unseen image x with a set
of prototype images in P. The index k varies over the images in the prototype
set P (size = p), while j indexes over a local feature set (size = my) in a given
prototype image indexed by k. (. determines if the resemblance of a previously
unseen image x to the prototype k has a positive (1) or negative influence
(B-). A¢ and Aﬁj indicate the relative importance of global (ductal) and local
(intra-ductal) features in the prototype k respectively. The relative importance
can be imagined as a distance measure, so we enforce non-negativity constraints
on A\¢ and )\ﬁj values. The functions ci(z) and fi;(z) compute the global and
local differences respectively between = and the prototype set P (more details
below). Finally, in formulating h(x; P) we assume that the prototype images are
independent and that the global and local information in each prototype can be
functionally disentangled into a product form.

Since our goal is to learn the relative importance of global and local features
in a prototype set, we solve the following optimization problem:

argmin £(3,A) = argmin Y _ CrsEnt(c(h(x;)), 4:) + Csl|B81> + CAlA| ()
i i=1

using gradient descent. We use cross-entropy loss function (CrsEnt) to penalize
misclassifications on the training set X = {z;} and to obtain Soptimar = {Ok}
and Aoptimal = {Ag,)\éj}. We use a tanh(o) activation function on h(x) from
Eq. 1. To avoid overfitting, we invoke £3 and {; regularization with coefficients
Cs and C), respectively. Following the intuition that a pathologist might pay no
attention to some features, e.g., small-round nuclei do not feature typically in
the diagnosis of ADH, we choose ¢; regularization for \ to sparsify the weights.
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3.2 Encoding Global and Local Descriptions of a Duct

The functions ci(z) and fi;(x) in Eq. 1 compute the global and local differences
between input image x and prototype set P, as outlined in the steps below.

Step 1: For a proof-of-concept, we adopt the approach from [13] to build ana-
lytical models of 16 diagnostically relevant histological patterns following the
guidelines presented in the WHO classification of tumors of the breast [§].

Analytical model of a cribriform pattern: Fig. 1 illustrates how to model a his-
tological pattern, cribriform, that is critical to diagnosing ADH. By considering
a spatial neighborhood of 100 pm around each cell (Fig.1A) in ground-truth
annotations of cribriform patterns in ROIs, the model incorporates three dif-
ferent components (Fig.1B): (1) polarization of epithelial cells around lumen
inside the ROI; (2) distance of any given nucleus in the ROI to two nearest
lumen; and (3) circularity of lumen structure adjacent to a nucleus inside the
ROI. For the ROI in Fig. 1A, the analytical models driving these three com-
ponents are: (1) mixture of Gaussians (MoG) (pu; = 0.87, u2 = 0.94, us = 0.72,
o1 = 0.002, 09 = 0.002, 03 = 0.003, 71 = 0.44, 72 = 0.35, w3 = 0.21) for modeling
the distribution of clustering coefficients [21]; (2) Gamma distribution (« = 3.11,
B = 34.37) for modeling distance values to lumen and (3) a uniform distribution
(a = 0.2, b = 0.92) to model the circularity values of nuclei inside the ROI.
We further combine these three components with a mixture model, performing
grid-search to optimize the mixing coefficients (Fig. 1B), to form the histological
pattern of cribriform (PS).

We pursue a similar approach to modeling other histological patterns using
ground-truth ROI annotations: 1. small, 2. large, 3. round, 4. crowded, and 5.
spaced, each modeled as a Gamma distribution; 6. elliptical, 7. large-round, 8.
small-elliptical, 9. spaced-large, 10. crowded-small, 11. spaced-small, 12. crowded-
elliptical, and 13. spaced-round each modeled as two-component MoG; and more
complex patterns 14. large-round-spaced, 15. picket-fence, and 16. cribriform
using a combination of Gamma, MoG, and Uniform distributions. Details on
parameter estimation are discussed in [13].

Generating Likelihood Scores: Next, to compare ground-truth model of any histo-
logical pattern P,; with a new model generated from the reference nucleus of an
input image (Pew ), we use two distance measures, 2-sample Kolmogorov-Smirnov

i Canocﬁ mapping of !
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Fig. 1. Modeling cribriform pattern in a sample ROI (A) using parametric models for
three component patterns in (B) and generating cell-level likelihood scores (C). Ductal
region and intra-ductal lumen are outlined in red in (A). (Color figure online)
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test and Kullback-Leibler divergence to compare Gamma and MoG distributions
respectively. To map smaller distances that indicate stronger presence of the fea-
ture, we compute likelihood scores by applying an inverted S-function on the dis-
tances. In Fig. 1C the final likelihood score from evaluating the cribriform pattern
is a weighted sum of the likelihood scores of the component patterns. A similar
operation is carried out for generating cell-level likelihood scores for the remaining
15 features. The principal advantage of these analytical models is in their ability
to handle heterogeneity that emerges from running imprecise low-level image pro-
cessing routines, such as methods for segmenting nuclei or identifying boundaries
of ductal ROIs. The heatmap visualization in Fig. 1C is a mechanism for explain-
ing the model to pathologists, informing where these patterns are and how strongly
they influence the overall diagnosis of a ROL.

Step 2: To encode the global description of a duct, we will represent it by a
matrix of size n x [ populated with likelihood scores, where n and [ refer to the
total number of cells and the number of histomorphological patterns respectively
(I = 16). Additionally, we include the size of the largest duct if the ROI has a
cluster of ducts. However, considering only the global information may lead
to diagnostic inconsistencies. For example, a duct resembling FEA is better
diagnosed as ADH if it contains a local cribriform pattern or as a CCC duct if it
contains some hyperplasia (further meriting a comparison of local hyperplastic
area with models of FEA/ADH).

Step 3: To encode the local description of a duct, we adopt a strategy followed by
most expert pathologists. To this extent, for every histomorphological pattern,
we identify islands within the duct where that particular feature is dominant
and consider the largest island for further analysis. We detect feature islands
by performing non-maxima suppression on cell-level likelihood scores using a
threshold (=0.8) based on cross-validation.

Step 4: Finally, we have the machinery to compute the functions ci(x) and
frj(x) from Eq.1. We define ci(x) = ||d(pg,x)||, where a small value of c(z)
implies high similarity of image = to prototype px. We combine two measures
to generate d: Kolmogorov-Smirnov test comparing 16-dim probability distribu-
tions of cell-level likelihood scores individually between = and pg and an inverted
S-function on the ratio of the duct sizes between z and pj. This leads to a 17-
dim vector d, which is further compressed by its 5 norm to obtain a single
scalar value ci(z) for every pair of z and pg. We further simplify the compu-
tation of fi;(z) by applying an inverted S-function on the ratio of the largest
feature island sizes from the same histological feature between x and py, suitably
modified to account for islands that are missing in either x or py.

4 Results and Discussion

4.1 Dataset

We collected a cohort of 93 WSIs which were labeled by an expert pathologist on
the team to contain at least one ADH ROI. The breast biopsy slides were scanned
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Table 1. Statistics of the atypical breast lesion ROI dataset

Prototype Set PS-1 PS-2 PS-3 Class NORMAL CCC FEA ADH ‘ Total
No. of ROIs 20 20 30 Train 420 99 116 119 | 754
No. of feature islands 84 86 145 Test 371 105 33 32 ‘ 541

at 0.5 pm/pixel resolution at 20x magnification using the Aperio ScanScope
XT (Leica Biosystems) microscope from which 1295 ductal ROI images of size
~ 1K x 1K pixels were extracted using a duct segmentation algorithm described
in [13]. Briefly, the algorithm first breaks down the image into non-overlapping
superpixels and then evaluates each superpixel’s stain level together with its
neighboring superpixels and assigns probabilities of them belonging to a duct.
These guesses are then used to perform Chan-Vese region-based active contour
segmentation algorithm [2] that separates the foreground (i.e., ducts) from the
background.

We collected ground truth annotations of extracted ROIs from 3 breast
pathology sub-specialists (P1, P2, and P3), who labeled the ROIs with one of
the four diagnostic categories: Normal, CCC, FEA, and ADH. The diagnostic
concordance for the four categories among P1, P2, and P3 were moderate with
a Fleiss’ kappa score of ~0.55 [20]. The entire dataset was split into two sets.

i. Prototype set: We formed three prototype sets (PS-1, PS-2, and PS-3) con-
taining ROIs with consensus diagnostic labels from the 3 pathologists having a
balanced distribution over the four diagnostic categories. The final set of proto-
type ROIs were verified by P1 to confirm adequate variability is obtained. The
number of aforementioned islands are also listed in Table 1.

1. Train and test set: The training set consists of 754 ROIs labeled by P1
and the test set contains 541 ROIs consensus labeled by P1-P3. The training and
test set were separated at WSI level to avoid over-fitting, since ROIs belonging
to the same WSI can be correlated histologically. Due to limited number of ROIs
belonging to the non-Normal category as seen in Table 1, the ROIs which do not
participate in the prototype set were also included in the dataset.

4.2 Model Training and Evaluation

Our ML model (Eq.1) is trained to minimize the objective function (Eq.2)
using gradient descent (learning rate = 1 x 10~* and convergence tolerance =
1x1073). Regularization coefficients Cjg and Cy, were initialized to 2. To speed up
convergence, we shuffle the training data after each iteration so that successive
training examples rarely belong to the same class. Prior to training, the model
parameters  and A were initialized with weights randomly drawn from LeCun
normal [9]. After each iteration, the parametric values of the objective function
(L), error-rate (e), 3, and A are stored. After model convergence, we use Boptimal
and Aoptimal Parameters in the mapping function (1) to obtain htes;. We generate
prediction probabilities p by first applying a tanh (o) activation to hiest and then
projecting it to the positive octant. If p > 0.5, the diagnostic label is 1 and 0
otherwise.
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4.3 Baseline Models (B1-B3)

Following the method laid out in [14], we define two baseline models, B1 and B2,
by re-implementing their cell-graph GNNs. We chose GNNs, a recently emerged
state-of-the-art technique for encoding spatial organizations, over pixel-based
convolutional neural networks (CNNs) as our experiments with CNNs showed
poor performances in capturing the spatial context [13]. B1 is obtained by gen-
erating a cell-graph topology and cells within each graph are embedded with
cytological features as in [14]. To assess the effect of histological patterns in cell
embeddings, we generate B2 by replacing the duct-level cytological features with
likelihood scores generated by our method. Finally, B3 is obtained by implement-
ing a Logistic Regression classifier using the duct-level likelihood scores, following
a similar strategy as in [13].

Table 2. Diagnostic results from the binary classification task expressed in %

Baseline PS-1 PS-2 PS-3
Model | B1 B2 B3 Gl L1 GL1 | G2 L2 GL2 |G3 L3 GL3
HR R 5616 |68:|:6| 6243 | 66+4 711 7344|684 T2+2 68+3 | 667 |T4+E2| 6943
wF 77+2 8243 76+1|65+2 61+1 65+1|67+4 61+1 63+2|63+1 64+1 64+1
ADH R 38+8 45:I:7|56:l:3| 7047 61£8 T8+ |59+13 |80+4| 7144 |72+6 70+11 68+5
wF 78+4 8642 79+1|70+3 64+2 67+5|64+3 62+1 60+6 |64+2 67+1 64+1
FEA R 48+12| 4046 3544 | 5446 6445 |68+7| 5846 60+3 6345|636 6742 6245
wF 81+5 82+3 78+1|71+2 65+2 69+3 | 66+4 66+3 69+£3|66+2 69+2 66+3

4.4 Classification Results

For the sake of differential diagnosis of atypical breast lesions, we implemented
several models using global (G), local (L), and both global and local information
(GL) from three prototype sets (PS1-PS3) and compared it with the baseline
models (B1-B3) (see Table 2). During the training step of each model, we created
a balanced training set by randomly subsampling ROIs from each category so
that we have equal number of ROIs for each classification category. To check for
statistical significance, for each classification task, we run our ML algorithm on
10 training sets wherein the images are randomly selected and we report the clas-
sification scores as the mean and standard deviation over 10 runs (Table 2). The
top panel of Table 2 (HR row) compares the classification performance of low-risk
(Normal+CCC, —ve class) vs high-risk (FEA+ADH, +ve class) cases. For each
diagnostic category (+ve class), we further implemented a different binary clas-
sifier for each modeling strategy proposed. The bottom panel of Table2 (ADH
and FEA row) shows the comparative performances of ADH- and FEA-vs-rest
diagnostic classification. We highlight results from high-risk category because
ADH lesion presents both - a risk of currently existing cancer (about 4%) and
there is a high absolute future risk of about 1% per year, up to 30% lifetime risk
[5]. FEA lesion combines the nuclear atypia seen in ADH, but lacks hyperplasia



150 A. Parvatikar et al.

and has simpler architecture [7]. Some patients with FEA will be offered surgery
and they would also be treated as high-risk in the future.

Performance Metrics: For each classification scenario, we use recall (R) as the
performance metric to focus on the correct detection of positive class, since there
is a significant class imbalance (see Table 1) and the consequence of misdiagnosis
(false negative) implies increased chance of developing cancer with lack of pro-
viding early treatment. We include weighted F-measure (wF) as an additional
metric which gives importance to the correct detection of both positive and neg-
ative classes [15]. The class specific weights in wF' are proportional to the number
of positive and negative examples present in the test set.

Classification Performance: We highlight the best recall performances in Table 2,
that are achieved using state-of-the-art baseline models against our method in
black and gray boxes, respectively. Our method shows significant improvement
(p < 0.01) in detecting diagnostically critical high-risk ADH and FEA ROIs
compared to the baseline methods (the best average recall achieved is 80% for
ADH classifier and 68% for FEA). We also observe that baseline models are
performing better on detecting Normal ROIs (see Supp. Table1 for compara-
tive results of CCC-, and Normal-vs-rest classification). This behaviour explains
higher weighted F-measure of baseline models in low- vs. high-risk classification,
since in the testing set low-risk ROIs are 7-fold more than high-risk ROIs (i.e.,
baseline models are biased to detect low-risk lesions even when the training set
was balanced). It is critical to note that real-life clinical observance of high-risk
lesions is also around 15% [8], which is naturally reflected in our testing set, and
it is crucial to catch these less-seen high-risk lesions for pre-cancer interventions
while being able to provide diagnostic explanations to given recommendations.
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Fig. 2. Highlighting the relative importance of the global and local features from dif-
ferent prototypes (I and IT) in ADH-vs-rest classifier.

4.5 Discussion

The explainability of our model is depicted in Fig. 2, which shows that our model
leverages both global (Ag) and local (Ar) information of the ductal ROIs of two
prototypical images, I and II, in detecting ADH from one of the experiments
using GL3 classifier built using prototype set PS3. The values of model param-
eters: absolute change in the objective function (AL), training error-rate (e),
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0B, and A\ after each iteration are shown in Supp. Figure 1 and more examples of
explainability are shown in Supp. Figure 2. Figure 2-1 positively guides in detect-
ing ADH category (8 = 0.15) whereas Fig. 2-11 is counterintuitive in detecting
ADH lesions (8 = —0.47). Although two of the histological feature islands, large
and large-round present within these ROIs overlap, we assert that the absence of
complex architectural pattern such as cribriform within Fig. 2-IT might have led
to a negative influence of this prototype’s influence to detect ADH. Although it
is possible that an FEA type lesion could be upgraded to ADH pathologically
without cribriform architecture, this would require thickening of the duct lining
to more than 5 cell layers which is uncommon in clinical practice.

Computational Cost: The entire pipeline is implemented in native Python 3.8.
Total time required to obtain a diagnostic label with computation of all features
for a previously unseen ROI is less than 30s on a 64-bit single 3.4 GHz Intel Xeon
processor.

Limitations: (1) Features like bulbous micropapillae and rigid cellular bars which
are diagnostically relevant to high-risk lesions are missing; (2) Selection of proto-
types was made on the basis of expert visual inspection. There is a need for more
sophisticated statistical approaches [1] for prototype selection and (3) for a more
detailed ablation study to test the robustness and reliability of our ML frame-
work; (4) To offset the issue of unbalanced datasets, we are collecting expert
annotations on additional high-risk lesion images.

Future Work: Our intent is to create an approach that generalizes, not only to
other, more straightforward breast diagnoses but also to tissue histologies from
other organs. Explainable machine learning approaches like ours will support
pathologists during their transition to digital and computational pathology.
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