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Abstract. Accurate diagnosis of high-risk benign breast lesions is cru-
cial in patient management since they are associated with an increased
risk of invasive breast cancer development. Since it is not yet possible
to identify the occult cancer patients without surgery, this limitation
leads to retrospectively unnecessary surgeries. In this paper, we present
a computational pathology pipeline for histological diagnosis of high-
risk benign breast lesions from whole slide images (WSIs). Our pipeline
includes WSI stain color normalization, ductal regions of interest (ROIs)
segmentation, and cytological and architectural feature extraction to
classify ductal ROIs into triaged high-risk benign lesions. We curated
93 WSIs of breast tissues containing high-risk benign lesions based on
pathology reports and collected ground truth annotations from three dif-
ferent pathologists for the ductal ROIs segmented by our pipeline. Our
method has comparable performance to a pool of expert pathologists.
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1 Introduction

Benign breast lesions are an important source of disagreement and uncertainty
for pathologists when evaluating breast core biopsies as part of multidiscipli-
nary breast cancer screening programs [6]. These benign lesions can be catego-
rized into three groups: nonproliferative, proliferative without atypia, or atypical
hyperplasia. Among these, atypical hyperplasias have a substantially elevated
(approximately 4-fold) risk of breast cancer development [5]. Atypical hyper-
plasias, which include atypical ductal hyperplasia (ADH) and atypical lobular
hyperplasia (ALH), are found in 12-17% of biopsies performed. More recently
flat epithelial atypia (FEA), which is an alteration of the breast lobules, is defined
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as an additional type of atypical lesion with uncertain long term breast cancer
risk [12]. Although this may change, FEA in a core biopsy is generally followed
by excisional biopsy [2]. On the other hand, columnar cell change (CCC) is a
relatively common, non-atypical proliferative lesion that is generally regarded
as very low risk despite morphological similarity to FEA [11]. In this study, we
focus on differentiating high-risk (ADH, FEA) vs. low-risk (CCC, normal duct)
breast lesions.
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Fig. 1. Sample ductal ROIs representing (A) atypical ductal hyperplasia (ADH), (B)
flat epithelial atypia (FEA), (C) columnar cell change (CCC), and (D) normal duct.
(E)-(H) Visualization of architectural patterns discovered in sample ROIs. Patterns
are derived from a combination of cytological and architectural features and visualized
by color coded objects (see x-axis of panel (I)). Note the overexpression of pattern #5
in ADH, #7 in FEA, and #15 in normal ducts (E)—(H). This observation is further
supported by the histogram in panel (I), where we measure relative proportions of
architectural patterns separately in each one of the categories: ADH, FEA, CCC, and
normal.

Diagnostic criteria for high-risk benign lesions exist but rely on atypia, which
is a subjective feature that may lack reproducibility, especially among non-
subspecialist pathologists. Figure 1A-D show sample ROIs from breast lesions.
ADH (Fig.1A) is difficult because it can have overlapping features with later
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invasive breast cancer development. Widely accepted criteria for diagnosing ADH
include: (1) atypical cell features, (2) architectural patterns, and (3) size or extent
of the lesion. However, the first two criteria can be subjective or variable, mak-
ing distinction from other cases problematic. FEA (Fig. 1B) generally refers to
open (or rounded) ducts lined by disorganized arrays of atypical appearing cells
including monomorphic appearance. They lack the orderly columnar arrange-
ment seen in CCC (Fig. 1C), where ducts are also often open and rounded, but
are lined by non-atypical cells that have a columnar arrangement. FEA and CCC
can be difficult to distinguish as they have similar architecture (i.e. flat), and
one must rely upon atypia.

To date, improved reproducibility and more consistent application of diag-
nostic criteria have been difficult to achieve for borderline cases such as ADH and
FEA [6]. To begin quantifying diagnostic criteria, we have constructed a com-
putational pathology pipeline for detecting high-risk benign breast lesions from
whole slide images (WSIs). Although there are several studies on cancer detec-
tion in breast tissue images, to the best of our knowledge, our proposed pipeline
is the first of its kind in detecting high-risk benign breast lesions. Previous stud-
ies [3,4,9,15] used manually selected ROIs from WSIs to classify breast lesions.
The approaches in [3,4,9] were based on cytological features, such as identi-
fying and characterizing morphology and texture of nuclei. In [9], the authors
combine both cytological and architectural features to demonstrate the impor-
tance of spatial statistics in separating cancer lesions from non-cancerous ones.
Recently, an end-to-end system for detecting ductal carcinoma in situ (DCIS)
was proposed by [1], in which ROIs from WSIs were delineated and classified
into benign vs. DCIS. Their study explicitly excluded slides containing ADH due
to high level of disagreement and the difficulty in collecting ground truth.

Our paper is the first attempt in building an end-to-end high-risk benign
breast lesion detector for WSIs that includes WSI stain color normalization,
ductal ROI segmentation, cytological and architectural feature extraction, and
ductal ROI classification. A key contribution of this study is to encode mor-
phometric properties of nuclear atypia (cytological) and combine them with the
spatial distribution of the nuclei in relationship to stroma and lumen (architec-
tural). Additionally, we collected high-risk benign lesion data and the ground
truth annotations from three expert pathologists.

2 Methodology

2.1 Stain Color Normalization

Histopathology images can have a wide range of color appearances due to bio-
logical differences, slide preparation techniques, and imaging hardware. One way
to reduce this variability is to preprocess the digital tissue images using color
normalization methods. For the datasets that we collected for this project, we
observed that previous methods [7,18] either do not scale well to WSIs or gener-
ate artifacts such as blue backgrounds. To resolve these issues, the authors in [10]
developed a scalable color normalization method based on opponent color spaces
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and a fast sampling-based strategy for parameter estimation. In particular, the
color space is similar to HSV and is optimized for separating hematoxylin and
eosin stains. Because this color space is angular, the stains are separated using a
mixture of von Mises distributions. After separating the stains, the statistics of
the source image is matched to a reference image up to the fourth order (Fig. 2A),
a common method in texture synthesis. In addition, this method is scaled to work
with large WSIs by an efficient sampling-based strategy for estimating von Mises
parameters. This method has been evaluated by a comprehensive set of quantita-
tive and qualitative performance measures and showed significant improvement
over the state—of-the—art color normalization methods.
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Fig. 2. Computational pipeline for detecting high-risk benign breast lesions from WSI.

2.2 Ductal ROI Segmentation

To segment ductal regions of interest the authors in [10] observed that the spatial
density of epithelial nuclei can be efficiently used to partition ducts from breast
WSIs. In particular, the WSI is decomposed into superpixels [17] to approxi-
mately denote the nuclei, stroma, and lumen components of the tissue (Fig. 2B).
Delaunay triangulation is performed on superpixel centers and a neighborhood
graph is constructed for the entire WSI. The triangulation preserves physical
distances and helps avoid the problem of connecting a fibroblast nucleus with
an epithelial nucleus when they are separated by a large area of stroma. As a
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first approximation to the spatial density of the nuclei, neighboring superpix-
els are connected by an edge if their physical distance is under a threshold as
given by the median distance between pairs of neighboring nuclei. A greedy con-
nected component analysis is then run on this graph to cluster the superpixels
into ROIs. Since the goal is to segment ductal ROIs, lumen superpixels are also
clustered into ROIs and then merged with nuclei ROlIs if they overlap.

2.3 Cytological Phenotyping

For the sake of phenotyping, we generate a more precise set of nuclei masks in
each ductal ROI using Fiji [13]. We apply a simple threshold on hematoxylin
color channel and obtain putative nuclei regions. We use watershed to separate
touching and overlapping nuclei and used morphological operations to fill any
remaining holes. Next, we eliminate small and large segmented objects and those
near the image border. Finally, one round of erosion followed by dilation is
performed to smoothen the nuclei shape.

To compute cytological phenotypes, we compute nuclear features as defined
in [3]. There are 196 features including morphological features such as round-
ness, aspect ratio, bounding box dimensions; intensity features such as means,
variance, skewness, and kurtosis in multiple color channels (RGB, HSV, La*b*);
and texture features such as Haralick’s features and graph run length features for
each nuclei. We observe three dominant phenotypes in this data, which we cap-
ture using Matlab’s k—means clustering algorithm, with k—means++ as smart
initialization and a warm start option. The three dominant phenotypes may be
a consequence of normal, atypical, and pleomorphic nuclei in high-risk benign
breast lesions (Fig. 2C). In addition, for the task of high-risk vs. low-risk classi-
fication, we construct a cytological feature (CF) vector for each ROI, which is a
summary statistic (e.g., mean, median, std-dev, etc.) of the aforementioned 196
measures.

2.4 Architectural Phenotyping

For the sake of architectural phenotyping, we follow the idea presented in [16] to
capture spatial properties of the tissue content. Mainly, the ROI is represented
by 5 different objects: three cytologically phenotyped nuclei (nuclei;, nucleis,
nucleis) and two superpixel based components (stroma and lumen) as shown in
Fig. 2C. To characterize the neighborhood around each object, a spatial network
is constructed by breadth-first traversal from each object for a small number of
depth levels (Fig. 2D). At each depth level we compute the probabilities of finding
15 different object connections (e.g., nuclei;—nuclei;, nuclei;—stroma, nuclei;—
lumen, etc.). As a result, for a maximum depth of 5, we generate a set of 75
probability values describing the neighborhood statistics for each object. The
depth is set to a small number because the ductal ROIs are local and the breadth-
first quickly covers its content.

To phenotype the spatial networks, we cluster the neighborhood statistics
into ¢ clusters by noting the principal subspace that captures 95% of the input
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variance. The architectural phenotypes are learned from applying k-NN algo-
rithm. Each image is then represented by the relative proportion of ¢ archi-
tectural patterns. We construct architectural feature vectors for three different
scenarios based on (i) color based architectural features (AF-C) that use super-
pixel derived nuclei, stroma and lumen objects; (ii) cytologically phenotyped
nuclei based architectural features (AF-N) that use nuclei phenotypes alone;
and (iii) combined architectural features (AF-CN) that use nuclei phenotypes
in combination with stromal and lumen superpixels.

3 Experiments and Results

3.1 Dataset

The pathological grading of cases was obtained from diagnostic pathology reports
and was validated by our expert, who processed them a second time under light
microscope. Whole slide images were then scanned using Aperio ScanScope XT
at 0.5 microns per pixel resolution at 20x magnification. We collected a cohort
of 46 ADH cases from a local hospital. These cases had a total of 269 WSIs, 93
of which were selected by the most experienced pathologist (P1) as containing
at least one high-risk benign lesion.

From these 93 WSIs, 1759 ROIs were derived using the process in Sect. 2.2.
Only 1009 ROIs are analyzed again by P1, forming the training set, and 750 ROIs
analyzed by three expert pathologists (P1, P2, and P3), forming the test set.
Each ROI could be classified as “ADH”, “columnar”, “flat epithelial”, “normal
duct”, “don’t know”, and “other”. Any ROI classified as “don’t know” or “other”
was discarded, leaving 839 ROIs in the training set. Any ROIs in the test set
in which all three pathologists disagreed were discarded, leaving approximately
608 ROIs. From this assignment, “ADH” and “flat epithelial” are reclassified as
“high-risk”, and “columnar” and “normal duct” are reclassified as “low-risk.” In
total, we observe 251 “high-risk” and 588 “low-risk” in the training set and 71
“high-risk” and 537 “low-risk” in the test set. The dataset is highly imbalanced
due to the low naturally rate of occurrence of ADH and FEA.

Within the test set, only 4% of the ROIs contain unanimous “high-risk”
labels from the expert pathologists, 12% of the ROIs had at least two expert
pathologists label it as “high-risk”, and 21% of the ROIs had at least one expert
pathologist label it as “high-risk”. The overall Fleiss’ kappa score is calculated
as .55, indicating a moderate agreement between the pathologists.

3.2 Results

Table 1 provides a summary of the results of recall over the high-risk ROIs and
the weighted F-measure for both classes. We use these performance metrics
because we are most interested in recognizing as many instances of high-risk
ROIs while limiting false positives. Each of the three pathologists were asked to
label each ROI, and their average performance informs the single expert pathol-
ogist baseline. All architectural feature sets (AF-C, AF-N, and AF-CN) were
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tested with Logistic Regression, Random Forest Walk, and SVM with SMOTE
and cross-validation parameter scanning (which performed the best in all cases).
From the original 196 cytological features, we generated 3530 summary statis-
tics and performed feature selection, which provided 151 remaining features.
This reduced set was tested with Naive Bayes, Decision Tree, SVM, and Logis-
tic Regression (which performed the best). For completeness, we report results
using Alexnet [8] and Overfeat [14]. ROI images were rescaled to 512 x 512
and augmented the dataset using three rotations and two reflection. We loaded
rebalanced batches and trained our nets for 2,000 epochs.

Table 1. Performance of our models using Color Architectural Features (AF—C), Nuclei
Architectural Features (AF—-N), Combined Architectural Features (AF—-CN), Cytolog-
ical Features (CF), Alexnet, and Overfeat. We compare them to our two baselines,
majority classification, and average single expert pathologist assessment.

Majority | Expert | AF—C | AF-N | AF—CN | CF | Alexnet | Overfeat
Recall 0.00 0.77 0.65 |0.65 |0.65 0.69 | 0.23 0.35
(high-risk)
F-measure | 0.83 0.78 0.62 |0.71 |0.76 0.8310.19 0.33
(weighted)

We find that using cytological features (CF) performs the best, but any archi-
tectural feature set performs similarly in both recall and F—measure. For both
architectural and cytological features, we find that these feature sets outper-
form the majority classification and perform comparably to the average single
expert pathologist classification with average computation time 26 min on a sin-
gle 2.4 GHz processor.

4 Conclusion and Discussions

Our goal in this paper was to build an end-to-end computational pipeline for his-
tological diagnoses of high-risk vs. low-risk benign breast lesions. We used both
cytological and architectural features in our method AF-CN. Figure3 shows
examples of AF-CN correctly and incorrectly classifying high-risk vs. low-risk
ductal ROIs. We observe that the ROIs in these examples were correctly seg-
mented by our pipeline. Figure 3A shows a typical example of ADH, where the
roundness and monomorphism of nuclei are correctly captured by AF-CN (true
positive). The high density of small ducts in Fig. 3B appears to be described by
the architectural phenotyping of AF—CN, which correctly classified it as low-risk
(true negative). However, the nuclei segmentation step falsely excludes overlap-
ping nuclei, an indicator of low-risk lesions, which may factor into the incorrect
high-risk classification of Fig.3C (false positive). Finally, AF—CN misclassifies
Fig. 3D as low-risk (false negative) possibly due to the AF—CN’s insufficient char-
acterization of the shape properties of lumen regions. In our study, we observe
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Fig. 3. Examples of (A) true positive, (B) true negative, (C) false positive, and (D)
false negative by method AF-CN.

that our combinations of cytological and architectural features did not provide
the expected improvement over using only cytological features. The examples
in Fig. 3 suggest that we can improve the performance by extracting additional
architectural phenotypes. Our results highlight the challenge of diagnosing atyp-
ical breast lesions. Effective computational pathology pipelines rely on ground
truth information, but this was surprisingly elusive in our study. It is very likely
that a combined approach of more specimens (i.e. more ADH or FEA exam-
ples), larger numbers of pathologists, and perhaps consensus decisions would
improve the reliability of ground truth. Regardless, our approach enables us to
begin understanding what the exact “atypical” features are; this may permit
future pipelines to better determine truly high-risk lesions and may also permit
retraining of pathologists to understand what these features might be.
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