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ABSTRACT
The differential diagnosis of proliferative breast lesions, be-
nign usual ductal hyperplasia (UDH) versus malignant duc-
tal carcinoma in situ (DCIS) is challenging. This involves
a pathologist examining histopathologic sections of a biopsy
using a light microscope, evaluating tissue structures for their
architecture or size, and assessing individual cell nuclei for
their morphology. Imposing diagnostic boundaries on fea-
tures that otherwise exist on a continuum going from benign
to atypia to malignant is a challenge. Current computational
pathology methods have focused primarily on nuclear atypia
in drawing these boundaries. In this paper, we improve on
these approaches by encoding for both cellular morphology
and spatial architectural patterns. Using a publicly available
breast lesion database consisting of UDH and three different
grades of DCIS, we improve the classification accuracy by
10% over the state-of-the-art method for discriminating UDH
and DCIS. For the four way classification of UDH and the
three grades of DCIS, our method improves the results by 6%
in accuracy, 8% in micro-AUC, and 19% in macro-AUC.

Index Terms— Breast Cancer, DCIS, Computational
Pathology, Architectural Patterns, Classification

1. INTRODUCTION

A recent and controversial article [1] reported on the issue of
diagnostic discordance among pathologists’ intrepretations
of breast core biopsy specimens. Pathologists tend to agree
on invasive carcinoma, but have high level of discordance
on atypical ductal hyperplasia and ductal carcinoma in situ
(DCIS). For example, usual ductal hyperplasia (UDH) is con-
sidered a benign proliferation and no treatment is prescribed.
Unlike UDH, DCIS is considered a preinvasive malignant
proliferation, and thus requiring aggressive treatment (such
as lumpectomy with or without whole breast radiation ther-
apy) [2]. Therefore, there is a great value in developing
computational pathology tools that can aid in minimizing
diagnostic discordance and providing quantitative measure-
ments for differential diagnosis of proliferative breast lesions.

[Equal contribution. Thanks to funding from UPMC CCA Grant
#711077, NIH-NCI U01CA20492601, and NHGRI U54HG008540.

1.1. Background and Related Work

Gold standard practice of pathology involves pathologists ex-
amining hematoxylin and eosin (H&E) stained tissue slides
under light microscope and making diagnostic and prognostic
decisions. Differentiating breast lesions into UDH and DCIS
requires careful examination of diagnostic criteria, including
cellular features, tissue architectures, and spatial extent [3].

Most notable works on differentiating breast lesions in-
clude C-Path Early Breast Neoplasia [4] and DCIS CAD sys-
tem [5] on whole slide images (WSIs). C-path focuses solely
on nuclear features such as morphology, intensity, and tex-
ture. DCIS CAD includes some architectural features such
as margination of regions of interest (ROIs), nuclei distri-
bution, and stroma/background quantification. However, nu-
clear and architectural features are treated as independent fea-
tures by [5], thus ignoring the standard diagnostic practice of
examining the spatial distribution of heterogeneous cell types
in a lesion [3]. Our method aims to overcome these limita-
tions by incorporating cell phenotypes in building architec-
tural patterns.

1.2. Contributions

In this paper, we focus on classifying UDH from DCIS. Our
approach is to first generate a small number of nuclei pheno-
types by taking into account nuclear shapes, sizes, intensities
and textures. Second, we assign each nucleus to an appropri-
ate phenotype and build a graph connecting each nucleus to
its neighbors (Figure 1). Third, we construct neighborhood
statistics to capture the spatial distribution of heterogeneous
nuclear phenotypes in a lesion. Finally, we cluster the hetero-
geneous cell distributions into a small number of architectural
patterns. For illustration, in Fig. 2 we show examples of ar-
chitectural patterns discovered in the Early Breast dataset [4]
and how they can help distinguish UDH from DCIS.

2. MATERIALS AND METHODS

2.1. Materials

We develop our algorithm using the publicly available Early
Breast dataset [4]. This dataset contains 116 cases (80 DCIS
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Fig. 1. Delaunay triangulation is used to generate a neigh-
borhood graph for the nuclei on the input image. Each node
is assigned to a particular nuclear phenotype (1, 2, or 3 by
colors). The center of this neighborhood is nucleus oi of phe-
notype 1. The number on each node corresponds to its depth
from oi as derived from a breadth-first traversal. The prob-
ability of finding a nucleus of phenotype 1 from the center
nucleus oi at depth level 1 is 28.5% (= 2/7).

Hospitals UDH Low
DCIS

Med
DCIS

High
DICS

Total

MGH 79 55 82 60 276
BIDMC 31 4 13 3 51

Table 1. Early Breast dataset [4]: Massachusetts General
(MGH) and Beth Israel Deaconess Medical Center (BDMC).

and 36 UDH) from Massachusetts General Hospital (MGH)
and 51 cases (20 DCIS, 31 UDH) from Beth Israel Deaconess
Medical Center (BIDMC). The pathological grading was ob-
tained from diagnostic pathology reports. Whole slide images
were scanned using Philips Ultra Fast Scanner 1.6 (Philips
Digital Pathology; Best, Netherlands) at 40× magnification
with a resolution of 0.25µm per pixel. From whole slide im-
age of each case, 1 to 4 diagnostic regions of interest (ROIs)
were manually selected for image analysis, resulting in 327
images of various sizes (between 400 pixels and 2000 pixels
per dimension). Nuclei masks were included in the dataset
and taken as inputs for feature extraction in our paper. Data
is summarized in Table 1. Since there is no example of nor-
mal tissue in the dataset, we are unable to build classifiers for
normal tissue.

2.2. Building nuclei phenotypes

Since we would like to incorporate nuclear phenotypes in de-
riving architectural patterns, we assign each nucleus to an ap-
propriate phenotype. For that, we compute nuclear features
using the nuclei masks provided in [4]. These features in-
clude morphology features such as roundness, aspect ratio,
bounding box dimensions; intensity features such as means,
variance, skewness, and kurtosis in multiple color channels
(RGB, HSV, La∗b∗); and texture features such as Haralick’s
features and graph run length features for each nuclei. These

features were calculated with no additional preprocessing of
the raw images. We observe three dominant phenotypes in
this data, which we capture using a k−means clustering algo-
rithm (in Matlab with k−means++ initialization and a warm
start option). We speculate that the three dominant pheno-
types are a consequence of normal nuclei in UDH, atypical
nuclei in low grade DCIS, and pleomorphic nuclei in high
grade DCIS.

2.3. Deriving architectural patterns from neighborhood
statistics

The proposed method relies on modeling the spatial organiza-
tion of various nuclei phenotypes within a tissue. Each image
I is represented by a set of nuclei O(I) = {oi}, where each
oi is represented by its center coordinates (xi, yi), together
with its phenotype ti ∈ {nucleus1, nucleus2, nucleus3}. To
compute the neighborhood statistics, we build a graph on the
nuclei phenotypes by constructing a Delaunay triangulation
on their center coordinates [6, 7] (Fig. 1).

Then we define a Breadth-First Traversal (B-FiT) for each
nucleus oi, by setting oi as the root of tree and visiting its
neighboring nuclei in breadth-first order using the edges of
the generated graph. We set maximum depth for B-FiT to h
hops from root. h is set to be small since DCIS nuclei are con-
sidered to show local properties such as pleomorphism and
forming rigid arches with neighboring nuclei [3]. Next, for
each depth level we compute the probabilities of finding each
type of nuclei phenotype (Figure 1). Since we have three phe-
notypes, it makes six different types of edges for each depth
level. As the result, for maximum depth of 10 hops, we have
a set of 60 probability values describing the neighborhood
statistics. In theory, these statistics which capture the spatial
distribution of various nuclear phenotypes and their interac-
tions are used to derive different architectural patterns.

Finally, we cluster the neighborhood statistics into q clus-
ters to find representative architectural patterns. For that, the
principal components of the training data is calculated first
and q is selected such that it will cover 95% of the input
variance (q = 25 in Fig.2). Following cluster center initial-
ization, each of the nuclei neighborhoods is assigned to its
closest cluster. For illustration, consider high grade DCIS in
panels (D) and (G) of Fig. 2. We observe that the pattern
#17 which is centered on red nuclei in (G) denotes a neigh-
borhood where the center nucleus has a small area of highly
concentrated chromatin and is surrounded by nuclei with uni-
form texture. Each image is represented by the % frequency
of occurrence of the q patterns. These feature vectors are then
used for classification.

2.4. Classification algorithm

For a fair comparison with C-path method [4], we used lo-
gistic regression with Lasso L1 penalty to build both classi-
fiers: binary (UDH vs. DCIS), and four-way (UDH and three
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Fig. 2. Architectural patterns derived from nuclei phenotypes can help distinguish proliferative breast lesions. (A) shows four
different histograms, each corresponding to a type of breast lesion, merged into one plot for illustration. The y-axis shows the
% frequency of occurrence of each architectural pattern. In the interest of space only the dominant patterns among the q = 25
discovered patterns are shown here. Note that pattern #17 is dominant in UDH, while patterns #9 and #14 are dominant in high
grade DCIS. For visualization, we pick the center nucleus for each pattern and paint it with the color shown below the x-axis.
(B) and (E) show an example UDH, in which patterns #10 and #17 are the majority. (C) and (F) show an example of low grade
DCIS, in which #13 and #17 are dominant. (D) and (G) show an example of high grade DCIS where a few of the pattern #17
neighborhood are observed among a large population of pattern #14 neighborhood.

grade of DCIS) [8]. We invoked nine-fold cross-validation to
identify the optimal regularization strength from a grid of 50
values chosen on a log scale between 1e−4 and 1e4.

3. EXPERIMENTS AND RESULTS

3.1. Experiments

The Early Breast dataset is divided into a train/validation set
from MGH and a test set from BIDMC. We trained the mod-
els and scanned their parameters on the MGH data and tested
them on the BIDMC data. The three models we picked for
comparisons are our Nuclei-Spatial (NS), Color-Spatial (CS),
and C-path [4]. In [4], each image is characterized by the
means and standard deviations of 196 nuclear features, in-
cluding morphology, intensity, and texture features. These
features are used as inputs to a L1 logistic regression.

In Nuclei-Spatial (NS), we applied L1 logistic regression
on the architectural patterns derived from nuclei phenotypes
as described in section 2.3. We tested multiple parameter set-
tings for NS, including combinations of two B-FiT depths
(h = 5 and h = 10) and two levels of variance coverage
by principle components (90% and 95%). Among these four
combinations, the best results were achieved for h = 10 with
95% variance coverage.

In Color-Spatial (CS), instead of deriving architectural
patterns on nuclear phenotypes, we derived them on color
objects (purple-nuclei, pink-stroma, and white-lumen) as de-
scribed in [6]. While C-path focuses on nuclear morphology

and CS focuses on spatial statistics, NS combines both types
of features.

In addition, we also build a AlexNet type deep neural net
to classify patches of size 128×128 from these images. How-
ever, the current deep net setup resulted in inferior classifi-
cation performance compared to the other three methods and
did worse than chance (<50%). This is potentially due to
small number of training examples and thus we did not report
these results in this preliminary paper. Since DCIS CAD [5]
did not make their code and data available, we do not include
their method in our comparisons.

3.2. Performance metrics

The performance of different models are assessed in terms of
accuracy and areas under the curve (AUC) [8]. Accuracy is
defined as the fraction of correct predictions in the test set.
AUC is the area under the receiver operating characteristic
(ROC) curve. In the binary classification (UDH vs. DCIS),
ROC is created by plotting true positive rate (TPR) against the
false positive rate (FPR) at different thresholds where DCIS
is the positive class. In the four-way classification (UDH
vs. three grades of DCIS), we computed both micro-AUCs
and macro-AUCs. Micro-AUC gives each image-label pair
an equal contribution to the overall metric, i.e., each pair is
counted toward FPR and TPR equally. Macro-AUC calcu-
lates the mean of AUCs by treating the four-way classifica-
tion as four binary classification problems. Better model has
higher AUC and accuracy values.
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Fig. 3. Classification results. (A) shows AUC for binary classification. Accuracy values are 0.75 for NS, 0.53 for CS, and 0.65
for C-path. (B) and (C) show four-way classification micro- and macro-AUCs. Four-way accuracy values are 0.65 for NS, 0.51
for CS, and 0.59 for C-path. Typical errors by NS include classifying Low and Med DCIS as UDH.

Fig. 4. Example classification results formatted as true class
vs. predicted class. (A) Low DCIS vs. UDH, (B) Med DCIS
vs. UDH, (C) UDH vs. UDH, (D) Low vs. High DCIS, (E)
Med vs. High DCIS, and (F) High vs. High DCIS.

3.3. Results

NS outperforms C-path and CS on both the binary and four-
way classification tasks. Note that NS uses both nuclear phe-
notypes and their spatial distributions, while C-path and CS
focus on either one or the other element. This shows the ben-
efit of combining morphometric properties of nuclear atypia
and the spatial distributions of the nuclei. For the binary
classification (UDH vs. DCIS), NS outperforms C-path by
10% in accuracy. For the four way classification (UDH, Low-
DCIS, Medium-DCIS, High-DCIS), the difference is by 6%
in accuracy, 8% in micro-AUC, and 19% in macro-AUC. The
results are included in Fig. 3, panels (A)-(C). While the classi-
fier NS performs well for UDH and High grade DCIS, it con-
fuses Low and Med grade DCIS with UDH. Fig. 4 shows ex-
amples of images correctly and incorrectly classified by NS.
In terms of computational speed, it takes 10-15 seconds to
calculate the features for each image and roughly 5 seconds
for logistic regression on the calculated features of all images.

4. CONCLUSIONS

Our goal in this paper was to build a more complete represen-
tation of histopathology images combining nuclear features
and neighborhood statistics to discover architectural patterns
for differential diagnoses of proliferative breast lesions. The
features will have to be further enhanced to correctly identify
Low and Med grade DCIS images. Another challenge is to
scale our method to whole slide images and tackle the more
difficult case of atypical ductal hyperplasia.
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