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MOTIVATION The functional response of a cell is determined not only by its internal state, but also by its
interactions with its neighbors and the stimulus it receives from its local environment (‘‘microdomain’’). Pre-
defined cell types based on dichotomous cell states fail to capture the highly plastic functional phenotypic
continuum of cells in a complex setting such as the tumor microenvironment. To address this challenge,
Furman et al. present an unbiased spatial analytics approach to characterize cell states on a continuum
from hyperplexed datasets and discover microdomains and signaling networks associated and potentially
driving colorectal cancer recurrence.
SUMMARY
Tumors are dynamic ecosystems comprising localized niches (microdomains), possessing distinct compo-
sitions and spatial configurations of cancer and non-cancer cell populations. Microdomain-specific network
signaling coevolves with a continuum of cell states and functional plasticity associated with disease progres-
sion and therapeutic responses. We present LEAPH, an unsupervised machine learning algorithm for identi-
fying cell phenotypes, which applies recursive steps of probabilistic clustering and spatial regularization to
derive functional phenotypes (FPs) along a continuum. Combining LEAPH with pointwise mutual information
and network biology analyses enables the discovery of outcome-associated microdomains visualized as
distinct spatial configurations of heterogeneous FPs. Utilization of an immunofluorescence-based (51 bio-
markers) image dataset of colorectal carcinoma primary tumors (n = 213) revealed microdomain-specific
network dysregulation supporting cancer stem cell maintenance and immunosuppression that associated
selectively with the recurrence phenotype. LEAPH enables an explainable artificial intelligence platform
providing insights into pathophysiological mechanisms and novel drug targets to inform personalized ther-
apeutic strategies.
INTRODUCTION

Tumors are dynamic and complex ecosystems. Tumor cells and

their stromal counterparts that comprise the tumor microenvi-

ronment (TME) reciprocally coevolve to generate heterocellular

communication networks. A distinctive characteristic of the

functional organization of this continuously evolving ecosystem

is spatial intratumoral heterogeneity (ITH), a key determinant of

disease progression landmarks in multiple carcinomas that

include colorectal carcinoma (CRC) (Almendro et al., 2013; Bus-

sard et al., 2016; Caswell and Swanton, 2017; DeGregori, 2017;

Hanahan and Weinberg, 2011; Roerink et al., 2018; Shia et al.,
Cell Repor
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2017; Tape, 2017; Tauriello et al., 2017; Tauriello and Batlle,

2016). Therefore, to optimize diagnosis, prognosis, therapeutic

strategies, and to identify novel therapeutic targets it is important

to define spatial ITH in the tumors of individual patients and

determine the mechanistic underpinnings of its relationship to

metastatic potential, immune evasion, recurrence, therapeutic

response, and drug resistance (Almendro et al., 2013; Balkwill

et al., 2012; Caswell and Swanton, 2017; Junttila and de Sauv-

age, 2013).

The functional response of a cell is determined not only by its in-

ternal state, but also by its interactions with its neighbors, and the

stimulus it receives from its local environment (‘‘microdomain’’)
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(Smith and Hodges, 2019; Vitale et al., 2021). Although the cell

statesare typically considered tobedichotomous, suchasmacro-

phages existing in knownM1-like andM2-like states, an emerging

view is the existence of a continuum of phenotypic states and the

consequent emergence of functional plasticity in responding to

perturbations (Aoki et al., 2020; Azizi et al., 2018; Lambrechts

et al., 2018; Neftel et al., 2019; Vitale et al., 2021). The heterogene-

ity in the composition of the microdomains and resulting spatial

intercellular communication patterns within each microdomain

has been linked to the spatial variability in disease progression

and treatment response (Azizi et al., 2018; Bartoschek et al.,

2018;Binnewiesetal., 2018;Maynardetal., 2020;Sautès-Fridman

et al., 2019; Smith and Hodges, 2019; Suda et al., 2018; Thorsson

et al., 2018; Vitale et al., 2021; Zhang et al., 2018). In addition, pre-

vious work has described the spatial landscape of individual tu-

mors as hot, cold, or excluded on the basis of the immune-stromal

microdomain patterns (Bonaventura et al., 2019). The basic nu-

merical quantification of these categories is an oversimplification

of spatial ITH and does not consider the evolutionary pressures

of the microenvironment (e.g., immunosuppressive signals

confining CD8+ cytotoxic T lymphocytes to the tumor periphery)

(Vitale et al., 2021). In fact, the microdomain-specific signaling

reciprocally supports the viewpoint of a highly plastic functional

phenotypic continuum with complex intermediary cell types and

cell states shaping the TME (Azizi et al., 2018; Smith and Hodges,

2019; Vitale et al., 2021).Characterizing the phenotypic continuum

can identify emergent cell dependencies to improve diagnosis/

prognosis and inform new therapeutic opportunities (Smith and

Hodges, 2019; Vitale et al., 2021).

Single-cell approaches, which include a ‘‘large’’ set of bio-

markers (including DNA, RNA, and proteins), are well suited to

capture this emergent phenotypic continuum (Nachmanson

et al., 2021; Nirmal et al., 2021). However, preserving the spatial

context is equally crucial to capture the various functional states

that cells might emerge through their neighborhood interactions

(Vitale et al., 2021; Zanotelli et al., 2020). Spatial transcriptomics

is a recent method that provides transcriptome-wide information

but is currently limited to a resolution of 10 mm (Burgess, 2019;

Nature Methods, 2021; Stickels et al., 2021). Here, we focus on

recent high-dimensional single-cell imaging methods, such as

multiplexed and hyperplexed immunofluorescence imaging

(Gerdes et al., 2013; Goltsev et al., 2018; Lin et al, 2016, 2018),

imaging mass cytometry (IMC) (Giesen et al., 2014), spatial tran-

scriptomics, and probabilistic cell typing by in situ sequencing

(pciSeq) (Qian et al., 2020).

The challenge we tackle in this study is how to utilize the com-

plex spatial and high-dimensional output of these hyperplexed

technologies to characterize cell types along a phenotypic con-

tinuum. We recognize that there are various cell-phenotyping

methods available, each with its own advantages and disadvan-

tages. First, many studies that have spatial data available do not

utilize the spatial context for cell phenotyping. Commonly, the

spatial information is applied as a post-cell typing step to

describe the differences in the spatial composition of cell types

across samples (Chen et al., 2020; Jackson et al., 2020; Mc-

Kinley et al., 2017; Sch€urch et al., 2020; Menietti et al., 2020).

Second, to capture the transitional cell states along a phenotypic

continuum, it is advantageous to use probabilistic clustering as
2 Cell Reports Methods 1, 100072, September 27, 2021
opposed to hard clustering, which assumes each cell belongs

to only one cell type. Methods such as pciSeq (Qian et al.,

2020) and Harmony (Korsunsky et al., 2019) utilize probabilistic

clustering but each with a different motivation. pciSeq uses

probabilistic clustering to estimate the assignments of each

single-cell RNA sequencing (scRNA-seq) read to each in situ

cell and each cell to a cell type. Harmony uses probabilistic clus-

tering to estimate cell types across multiple datasets with data-

set-specific conditions. Third, utilizing a hierarchical component

is advantageous to dissect nested cell types and states (e.g., im-

mune cells, macrophages, specific macrophage states). A

frequently used tool, CellEngine (www.cellEngine.com), includes

the option to dissect cell types in a hierarchical structure but the

cell types defined in this tool are supervised and, therefore, user

defined. In another study, a hierarchical structure is used to

tease apart specifically the immune cell subclusters (Santama-

ria-Pang et al., 2017). In this paper, we explore a cellular pheno-

typing method that utilizes a spatial, probabilistic, and hierarchi-

cal component.

Specifically, we describe LEAPH, an unsupervised machine

learning algorithm for identifying cell phenotypes. LEAPH builds

a tree-structured hierarchy of cell types and cell states, which we

refer to as functional phenotypes (FPs), on a continuum using

recursive probabilistic clustering and spatial regularization

steps. LEAPH learns the FPs with no ground truth or tagged

data, hence our use of the word unsupervised. However, the

number of cell clusters derived by LEAPH is tied to a small set

of free parameters within the stopping criteria (e.g., using a min-

imumcell fraction of 1%).We applied LEAPH in combination with

pointwise mutual information (PMI) to hyperplexed (51 bio-

markers) immunofluorescence images of CRC primary tumors

(n = 213) with corresponding clinical data. The biomarkers

were selected with the interest of sampling a range of CRC

and cancer biology TME properties (see STAR Methods for

more details).

The data-driven and computationally unbiased approach

of LEAPH captured a phenotypic continuum comprised of

specialized, transitional, and multi-transitional cell states that

are intrinsic to the architecturally complex and reciprocally co-

evolving TME of CRC. Each LEAPH-derived FP is further charac-

terized by a unique biomarker-positive (+) signature for ease of

interpretation. With these biomarker signatures, we conclude

properties demonstrating the heterogeneity of tumor cells, can-

cer stem cells (CSCs), macrophages, cancer-associated fibro-

blasts (CAFs), immune cells, and hybrid tumor-macrophage

cells. In addition, we performed a virtual simulation where the tis-

sue is assumed to be labeled with a subset of key biomarkers (as

opposed to the 51 biomarkers we started with) to demonstrate

the process to obtain a rank-order subset of biomarkers for char-

acterizing phenotypic diversity. This simulation demonstrates

the potential of performing iterative cycles of imaging and

computational analysis with an optimal biomarker set to fully

exploit the capabilities of LEAPH.

Using our previous work utilizing PMI to characterize spatial ITH

(Spagnoloetal., 2016),weshowhowLEAPHenables thediscovery

of microdomains, which are spatial configurations of FPs

driving disease progression dynamics in the TME of CRC. We

discoveredrecurrence-associatedmicrodomainsandhypothesize

http://www.cellEngine.com


Figure 1. Unsupervised machine learning algorithm for identifying functional phenotypes (LEAPH) on hyperplexed CRC tissue microarray

dataset

(A) A zoomed in region of a stage II CRC tissue sample (ca. 0.6 mmcores). Each subpanel is pseudo-colored with DAPI (blue), and pairs of biomarkers indicated in

the subpanel (e.g., subpanel a is pseudo-colored with 4EBP1 [red] and PTEN [green]). See also Figure S1.

(B) Workflow schematic of the LEAPH algorithm, which performs recursive steps of probabilistic clustering and spatial regularization.

(C) The terminal nodes of the tree (leaves) signify distinct FPs.
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themicrodomains to hold either tumor-promoting or -suppressing

properties. Furthermore, co-evolving with the TME, microdomain-

specific network dysregulation was observed supporting CSC

maintenanceand immunosuppression,whichappearednecessary

fordriving the recurrencephenotype. TheLEAPH framework,when

combined with microdomain discovery andmicrodomain-specific

network biology, has the potential to provide insights into patho-

physiological mechanisms, identify novel drug targets, and inform

therapeutic strategies for individual patients.
RESULTS

Hyperplexed fluorescence CRC tissuemicroarray image
dataset
Hyperplex imaging techniques can be non-destructive with the

methodology of antibody labeling being either iterative (Gerdes

et al, 2013, 2014; Graf and Zavodszky, 2017; Lin et al, 2016,

2018; McKinley et al., 2017; Nelson et al., 2013; Santamaria-

Pang et al., 2017) or performed in a batch before imaging (Golt-

sev et al., 2018). Hyperplexing technologies unrelated to fluores-

cence imaging are also available, such as mass cytometry,

which are both destructive and perform biomarker batch labeling

(Giesen et al., 2014).

In this study, the primary source of data is a cohort of 213 CRC

tissue samples (tumor microarray core size = 0.6 mm, one sam-

ple per patient) hyperplexed by using Cell DIVE (GE Life

Sciences, Issaquah, WA) (Gerdes et al., 2013) (Figure 1A). The

images and data undergo a series of tissue and cell quality

checks, log2 transformation, and normalization steps. To inte-

grate data from batch processing each biomarker is normalized

to a control median. Cellular segmentation is done by using a

collection of structural biomarkers: NaKATPase (cell membrane,

cell border), S6 (cytoplasm), and DAPI (nucleus) (Figure S1A).

Cells are filtered by using individual quality control scores gener-

ated for each cell (scores less than 0.7–0.8 will not be included

indicating inaccurate registration, misalignment, or tissue loss)

and on the basis of number of pixels per segmented subcellular
compartment. See STARMethods for more information on data-

generation and pre-processing steps.

The biomarkers chosen are protein markers for specific cell lin-

eages, oncogenes, tumor suppressors, and post-translational

protein modifications indicative of cellular activation states

(Gerdes et al., 2013) (Table S1). A subset of the biomarkers was

selected specifically on the basis of their known association

with CRC. In addition to the tissue samples, the CRC patient

dataset also includes clinical information for each patient

regarding sex, age, chemotherapy treatment, and days until

recurrence post-surgical resection (patient statistics in Table S2).
LEAPH builds a phenotypic hierarchy of cell types and
states through recursive steps of probabilistic
clustering and spatial regularization
LEAPH can process a range of input data from a single sample

(�2K cells) to a cohort of samples (tested on 213 tissue samples,

�500K cells in total). LEAPH applies recursive steps of modeling

cell types with probabilistic clustering and refining cell

states with spatial regularization (Figure 1B). The ownership

probabilities for any given cell are constructed recursively by

parsing through the hierarchy (sum to 1 for each cell). To avoid

overfitting, we apply stopping criterion on the basis of thresholds

on the angle between the cluster subspaces and the fraction of

cells with majority ownership probability in each cluster (see

the STAR Methods). The terminal nodes of the tree, i.e., leaves,

signify distinct data-driven FPs discovered in the input dataset

determined by the recursive decomposition (Figure 1C).

We define cell states as being specialized or non-specialized

on the basis of the FP ownership probabilities for each cell. A

specialized cell state is defined by a strong propensity toward

a single FP (ownership probability >0.95). For convenience, we

further group the non-specialized cell state as being a transitional

(ownership probabilities spread between two FPs) or multi-tran-

sitional (ownership probabilities spread across more than two

FPs). We visualize the spatial distribution of the LEAPH-derived

FPs by assigning each cell to the FP with the highest ownership

probability (Figure 1C).
Cell Reports Methods 1, 100072, September 27, 2021 3



Figure 2. Illustrating the recursive steps of probabilistic clustering and spatial regularization in LEAPH

(A)Top left: synthetic data generated to reflect the statistics of the CRC biomarker data. Top right: one-tier non-recursive probabilistic model clustering fails at

segmenting the four modes in the ground truth synthetic data. Bottom left: level 1 of the recursive split identifies the two dominant clusters in the synthetic data.

Bottom right: level 2 of the recursive clustering splits each dominant cluster from level 1 to segment the four clusters from the synthetic data. An example

ownership probability vector is shown in each clustering attempt, color-coded on the basis of respective cluster.

(B) We perform spatial regularization on a single patient sample and track the ownership probabilities for each cell undergoing regularization at each iteration.

Most of the cells converge to a specialized cell state (ownership probabilities >0.95 or <0.05), but a small subset of cells remains in the non-specialized state range

(ownership probabilities between 0.05 and 0.95).

(C) Tissue sample where each cell is outlined with the ownership probability before and after spatial regularization. We specifically point to two cells, each with

an ownership probability of 0.8 before spatial regularization. After regularization, one cell converges to a specialized FP (top zoomed box) and one cell remains

non-specialized (bottom zoomed box).
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We generate a synthetic biomarker dataset (Figure 2A) to

reflect the distribution of biomarker values in the hyperplexed

CRC data. There is a varying spread of biomarker values likely

due to the individual biomarker response sensitivity (Figure S1D)

and the observation of dominant phenotypes (e.g., epithelial and

stromal cells) with various nested cell subtypes (e.g., immune,

CSCs). To account for these observations and automate the

process of cellular phenotype discovery, we utilize a recursive

probabilistic clustering approach where each step attempts to

dissect the two most dominant clusters. A probabilistic clus-

tering approach allows each cell to discover an identity along

the phenotypic continuum by claiming ‘‘ownership’’ to more

than one cluster. This is different from hard clustering ap-

proaches, which result in discrete cellular identities with binary

ON/OFF states.

For the probabilistic clustering, we use a mixture of factor an-

alyzers (MFA) model. In this model, each mixture component is a

factor analyzer in a two-dimensional latent space; as we

observed, this is sufficient to capture the input variance (Fig-

ure S1C). On the synthetic data (Figure 2A, top left), we instan-

tiate a one-tier MFA model with four mixture components (Fig-

ure 2A, top right) and our proposed recursive decomposition

where each level of the hierarchy identifies two dominant mixture

components (Figure 2A, bottom). Comparing the results with the

ground truth synthetic data, the one-tier MFA model is unsuc-

cessful at discovering the four phenotypes. The recursive

decomposition method separates the larger broad clusters in
4 Cell Reports Methods 1, 100072, September 27, 2021
the first level and the finer subclusters at the second level of

the hierarchy.

The MFA model parameters are learned through random ini-

tializations over 100 different runs and a consensus set of model

parameters are inferred to capture the optimal subspace repre-

sentation (Figure S2A). The recursive probabilistic clustering

when applied alone results in a large and unrealistic population

of non-specialized cells (typically 25% in a single tissue sample).

The probabilistic clustering is agnostic to the spatial complexity

of the TME, a key component driving ITH. On the basis of prop-

erties of spatial ITH and the spatial tissue architecture of a tumor,

we expect neighborhoods of cells to be spatially coherent (e.g.,

epithelial/tumor cells to be surrounded by, or spatially proximal

to, other epithelial/tumor cells, but making allowance for the

presence of tumor-infiltrating lymphocytes and other stromal

cells) (Chen et al., 2020). To filter false-positive non-specialized

cells, we add a spatial regularization component to the recursive

probabilistic clustering.

The novel objective function for the spatial regularization

component consists of two terms: one to promote ownership

probability confidence and one to promote spatial coherence

within a small neighborhood. We assume that the two terms

hold equal weight and calculate the tuning parameter accord-

ingly. All cells are tested under this objective function but only

the cells classified as non-specialized initially (ownership proba-

bility 0.05–0.95) are further optimized. Cells initially classified as

specialized are fixed (remain invariant during the optimization) to
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avoid altering the ownerships of cells, such as tumor-infiltrating

lymphocytes, which will not maintain spatial coherence. Within

a single tissue sample, we observe that most of the cells

converge to one cluster, but a subset of cells remains non-

specialized (1%–4% in a single tissue sample) (Figure 2B). To

gain a deeper spatial understanding, we demonstrate the trans-

formation of ownership probabilities of two cells in this simula-

tion. One cell conforms to the surrounding homogeneous

neighborhood and one cell remains non-specialized between

the two clusters because of the heterogeneous nature of the sur-

rounding neighborhood (Figure 2C). A more detailed description

of LEAPH can be found in the STAR Methods.

LEAPH captures a diverse set of FPs comprised of
specialized, transitional, and multi-transitional cell
states
We applied LEAPH on the CRC hyperplexed data (�500K cells)

and identified a cellular phenotypic heterogeneity tree consisting

of 13 distinct FPs (leaves) (Figure 3A). A small subset of non-

specialized cells (4%) is dispersed across the 13 FPs identified.

We show the total number of cells with a shared ownership prob-

ability between each FP pair (Figure 3B) and observe the greatest

number of non-specialized cells share ownership probabilities

between FP2 and FP4. Interestingly, we find a bigger population

of non-specialized cells between FP2 and FP4 in the no evidence

of disease beyond 8 years (NED-8yr) patient cohort than the dis-

ease recurrence within 3 years (REC-3yr) patient cohort (Fig-

ure S2B). As a visual example, we show a small neighborhood

of cells classified as specialized and non-specialized cell states

(Figure 3C).

On the basis of known discriminative biomarkers (E-cadherin,

NaKATPase), we identify FPs as either epithelial (FP1-7) or stro-

mal (FP8-13). For ease of further interpretation, we identify FPs

with heterogeneous properties of tumor cells (PCK26+), CSCs

(EZH2+), macrophages (CD68+, CD163+), CAFs (SMA+), im-

mune cells (CD3+, CD20+, CD31+, CD79+), and hybrid tumor-

macrophage cells (Figure 3D) on the basis of FP-specific

biomarker-positive (+) signatures (Figure 3E). Interestingly, on

the basis of the biomarker-positive (+) signature, FP4 shows

macrophage (CD163+) and tumor cell (PCK26+) properties

and, therefore, we hypothesize that FP4 has identified a pheno-

typic cluster of protumorigenic hybrid epithelial-macrophage

cells derived through cell fusion (Gast et al., 2018; Pinto et al.,

2019).

To visualize the spatial complexity, we assign cells an FP iden-

tity on the basis of the highest ownership probability and

randomly select patients from the extrema of the outcome-

based cohorts: NED-8yrs and REC-3yrs. As expected, each tis-

sue sample is comprised of a heterogeneous population of FPs

comprised of specialized, transitional, and multi-transitional cell

states (Figure 3F). In addition to applying LEAPH to the entire pa-

tient cohort, we can apply LEAPH to sub-cohorts of patients

(particularly on the basis of diagnosis: stage I, II, III). We did

not find a relationship between each stage-specific set of FPs

and recurrence outcome. However, we did notice a difference

visually in the spatial distributions and found specific properties,

such as the population change of non-specialized cells between

FP2 and FP4. In the next section, we further pursue the spatial
relationships between the 13 LEAPH-derived FPs within each

tissue sample to time to recurrence and find that the spatial dis-

tributions of FP pairs are statistically significant in relation to

time-to-recurrence.
LEAPH FPs enable the discovery of microdomains
driving a recurrence phenotype with PMI and spatial
network biology
Visually, each tissue sample is composed of a unique pattern of

LEAPH-derived FPs (Figure 3F). We hypothesize that the patient

cohorts with the greatest differences in outcomes will also have

distinct spatial heterogeneity patterns. To discover these spatial

patterns, we pooled two different cohorts: NED-8yrs (n = 45) and

REC-3yrs (n = 46) (Table S2, see the STARMethods). To capture

the spatial heterogeneity patterns, we measure the statistics of

how often two FPs spatially co-occur, when compared with a

background distribution. We use PMI to measure this statistic

for each patient (STAR Methods) (Spagnolo et al., 2016). The re-

sulting PMI values are either negative, zero, or positive indicating

if an FP pair spatially co-occurs below, the same, or above

average compared with a random background distribution (Fig-

ure 4A, see STAR Methods for details).

For each FP pair, we aggregate the PMI values to form NED-

8yrs and REC-3yrs distributions (Figure S3D). We use a permu-

tation test (Stanberry, 2013) to determine which FP pairs have

a significant difference in spatial co-occurrence, compared

with a background distribution, between the NED-8yrs and

REC-3yrs patients (Table S3; STAR Methods). In addition, we

perform the same permutation test analysis using the clinical var-

iables (stage, grade, sex, and age) and FP fractions per tissue

sample. We found that the spatial configurations determined

by PMI are statistically more significant in relation to time to

recurrence than the FP fractions per tissue sample and are simi-

larly ranked to the stage and grade clinical covariates (Table S3).

We report nine FP pairs whose spatial co-occurrence

comparedwith a background distribution is significantly different

between the two patient cohorts (Figure 4B). Of these significant

FP pairs, eight (of nine) FP pairs show PMI distributions skewed

higher in the REC-3yrs cohort, indicating that these FP pairs

spatially co-occur more significantly in this cohort as opposed

to the NED-8yrs cohort (Figure 4B). One FP pair (FP2:FP4) shows

the opposite, indicating that this FP pair spatially co-occurs

more significantly in the NED-8yrs cohort.

The nine FP pairs form two microdomains (Figure 4C). Micro-

domain 1 (uD1) is comprised of an epithelial-stromal network

with interactions between two tumor FPs (FP1, FP7), two CSC

FPs (FP5, FP6), two CAF FPs (FP9, FP12), and an immune cell

FP (FP13) (Figures 4C and S3A–S3C). The association of stromal

cells, particularly CAFs, with poor survival in CRC has been

consistently demonstrated (Calon et al., 2015; Guinney et al.,

2015; Isella et al., 2015). Microdomain 2 (uD2) consists of a pair-

wise relationship between a tumor FP (FP2) and a hybrid tumor-

macrophage FP (FP4) (Figures 4C and S3A–S3C). The discovery

of uD2 is particularly interesting because we also found the most

non-specialized cells between these two FPs and a change in

this population between the NED-8yr and REC-3yr cohorts

(Figure S2C).
Cell Reports Methods 1, 100072, September 27, 2021 5



Figure 3. LEAPH reveals cellular phenotypic heterogeneity and identifies specialized, transitional, and multi-transitional cell states in a CRC

hyperplexed dataset

(A) Cellular phenotypic hierarchy derived by applying LEAPH on the entire CRC cohort. The size of each node is proportional to the fraction of cells with majority

ownership to that FP (size key). Each leaf node represents a data-driven FP determined by the stopping criteria. The set of all leaf nodes, 13 FPs in total, form the

components of the final mixture of factor analyzers model for the CRC patient cohort.

(B) Left: fraction of cells in each of the resulting data-driven FPs. Right: lower triangular matrix depicting the number of cells with shared ownership probabilities

between each pair of FPs (see STAR Methods). We observe that the non-specialized cells are most likely in a state of transition between FP4 (hybrid tumor-

macrophage cell type) and FP5 (cancer stem cell type). See also Figure S2.

(C) Example of a neighborhood of cells classified as specialized and non-specialized cell states. We point to multiple cells within the neighborhood with varying

ownership probabilities. This neighborhood depicts a specialized, transitional, and multi-transitional cell states (see main text for more details).

(D) Based on biomarker-positive (+) signatures that are unique to each FP (subpanel d), we further group the 13 FPs into broad categories of tumor cells, CSCs,

macrophages, CAFs, immune cells, and hybrid tumor-macrophage cells for ease of biological interpretation.

(E) Each FP has a unique biomarker-positive (+) signature which quantifies the fraction of biomarker-positive (+) cells in each FP. This signature enables us to

characterize the functional properties of each FP based on known cell-type-specific markers (subpanel c).

(F) Illustrative tissue samples from NED-8yrs and REC-3yrs cohorts. Cell masks are colored to indicate the FP with has the highest ownership probability for the

reference cell.
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Figure 4. Discovery of microdomains driving a recurrence phenotype with PMI and spatial network biology

(A) PMI maps are computed for each tissue sample to quantify the spatial co-occurrence of each FP pair in relation to a random background distribution

(see STAR Methods). The PMI values are normalized to the range �1 to 1 for visualization.

(B) The PMI values for each FP pair are grouped by the outcome data: NED-8yrs and REC-3yrs. Comparing the PMI distributions with a permutation test identified

nine significant FP pairs (p < 0.05), including one FP pair to be highly significant (p < 0.005) (see STAR Methods, Table S3, and Figure S3D). Each significant FP

pair (except FP4:FP2) has a distribution skewed higher for the REC-3yr group implicating a greater level of spatial co-occurrence compared with a random

background distribution (vice versa for FP4:FP2).

(C) Two microdomains emerge from the FP pairwise significance analysis.

(legend continued on next page)
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Unlike uD1, uD2 consists of an FP pair which shows a PMI dis-

tribution skewed higher in the NED-8yrs cohort (as opposed to

the REC-3yr cohort), indicating that this FP pair has a stronger

propensity to spatially co-occur in the NED-8yr cohort. Based

on this observation, we hypothesize that uD1 has tumor-promot-

ing properties and uD2 has tumor-suppressing properties.

We further investigated spatial biomarker network biology

associated with recurrence. For each microdomain and patient

cohort, we computed the partial correlation between each

biomarker pair, controlling for the remaining confounding

biomarkers (Uttam et al., 2020). We performed a differential con-

nectivity analysis with a permutation test to determine the

biomarker-pairs with a significant change in the partial correla-

tion values between the NED-8yrs and REC-3yrs cohorts (see

STAR Methods for details). This analysis results in a microdo-

main-specific partial correlation networks for each patient cohort

(Figures 4E; Table S4). Importantly, most of these comparisons

show a change in sign in the partial correlation values, suggest-

ing that a distinct difference in network dysregulation in addition

to co-occurrence of cell type per se is necessary for driving the

recurrence phenotype. This result supports our working hypoth-

esis that, within the evolving tumor microenvironment, the mo-

lecular signaling networks within each microdomain undergo a

regulatory switch to confer a recurrence phenotype supported

by cancer stem cell maintenance and immunosuppression

(Augustin et al., 2016; Bienz and Clevers, 2000; de Jaeghere

et al., 2019; Dienstmann et al., 2017; Galluzzi et al., 2019; Grasso

et al., 2018; Kraman et al., 2010; Naito et al., 1998; Pai et al.,

2017; Spranger and Gajewski, 2015, 2018; Turley et al., 2015;

Wong et al., 2019; Yaeger et al., 2018). This is further supported

by the reduction in number of transition cells across FP2 and FP4

(uD2) between the NED-8yrs and REC-3yrs cohorts (Figure S2C).

Thus, uD1, and uD2 microdomains represent the spatial manifes-

tation of emergent recurrence-specific networks.
Optimal selection of biomarkers for reproducing
phenotypic diversity
For hyperplexing platforms that are non-destructive of the tissue

and iterative in labeling biomarkers, such as the Cell DIVE plat-

form, there is an option of bringing in biomarkers on demand.

In other words, instead of using 51 biomarkers upfront, can we

select an optimal list of biomarkers much smaller in number

that we can apply iteratively to reveal the phenotypic diversity?

To test this hypothesis, we performed a virtual simulation of

systematically introducing biomarkers into the data and applying

LEAPH at the first (epithelial-stromal dissection) and second

(epithelial- and stromal-subtyping dissection) levels of the hierar-

chy (see STARMethods). For comparison, we use the maximum

ownership probability from the results derived from the entire da-

taset (Figure 3) as the ground truth FP identity. We measure the

accuracy as the percentage of cells with a matching FP identity

to the ground truth.
(D)We visualizemicrodomain 1 in the NED-8yrs and REC-3yrs cohort with the sam

to microdomain 1 (see STAR Methods).

(E) Within eachmicrodomain, we identify a recurrence-associated biomarker netw

their presumed cellular functions/processes and the color and thickness of each

(see legend).
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At the first level, only two biomarkers (PCK26, E-cadherin) are

needed to reproduce the cellular phenotypic assignments with

an accuracy above 97% (Figure S4A). Increasing the number

of biomarkers further increases the accuracy to almost 99% (Fig-

ure S4A). This analysis demonstrates that the epithelial-stromal

dissection is a low-dimensional dissection, as suspected.

At the second level of the hierarchy, both the epithelial and stro-

mal subtyping dissections require a larger set of biomarkers than

level 1 (Figure S4A). The epithelial subtyping dissection reaches

89% accuracy with four biomarkers (4EBP1, pS6, pMAPKAPK2,

FPNA) (Figure S4A). An increase in biomarkers does not make

an overall substantial difference in the reproduction accuracy.

The stromal subtyping dissection reaches above 93% accuracy

with four biomarkers (Lamin A/C, Claudin 1, Akt, 4EBP1).

Contrasting from the epithelial subtyping dissection, the addition

of more biomarkers leads to a convergence to almost 97% accu-

racy with eight or more biomarkers (Figure S4A).

We conclude that there exists an optimal subset of biomarkers

at each LEAPH dissection. This virtual simulation demonstrates

the capabilities of LEAPH to exploit the non-destructive and

iterative nature of the Cell DIVE platform with a parsimonious

selection of biomarkers to re-generate identical FPs (Figure 5).
DISCUSSION

We describe LEAPH, an unsupervised, spatially informed, recur-

sive probabilistic clustering method, to describe FPs along a

continuum of cell types and cell states. The traditional ap-

proaches to cell phenotyping focus on each cell type alone. In

comparison, the functional cell phenotyping approach pre-

sented here focuses on discovering data-driven cell phenotypes

and associating the resulting phenotypes with clinical outcomes.

Inferring functional cell properties associated with outcomes

enables the generation of testable hypotheses and thus moves

well beyond typical cell phenotyping.

The computational time for applying LEAPH is correlated to

the number of levels the hierarchy derives (Figure S4B). LEAPH

is built as a generalizable model amenable to other datum

sources, probabilistic clustering algorithms, and spatial regulari-

zation objective functions/optimizations. The probabilistic clus-

tering step of LEAPH is amenable to other probabilistic mixture

models such as but not limited toGaussianmixturemodels (Rey-

nolds et al., 2000) andmixtures of probabilistic principal-compo-

nent analysis (Tipping and Bishop, 1999). An argument could be

made that a low-dimensional model will be scalable with a larger

number of biomarkers. In addition to the choice of a low-dimen-

sional model, there is room for improvements to better estimate

the noise model based on the data-generation method. For the

spatial regularization step, the objective function in place is

amenable to other optimization methods (e.g., gradient descent)

and the objective function is adjustable to other sources of input

data. Currently, most of the computational effort is absorbed in
e set of tissue samples as in Figure 3F, but only coloring the cells that contribute

ork (see STARMethods; Table S4). The biomarkers are grouped on the basis of

edge is coordinated to the partial correlation value between the biomarker pair



Figure 5. Analytical platform that can be applied to any multi- to hyperplexed image datasets

LEAPH enables the application of a spatial analytics and microdomain-specific network biology-based early discovery and development platform to a multi- to

hyperplexed imaging platform such as Cell DIVE used in this study, as well as other hyperplexed technologies (Giesen et al., 2014; Goltsev et al., 2018; Lin et al,

2016, 2018; Vickovic et al., 2019). The pipeline begins with the preparation of patient tissue samples for pathology including labeling with multi- to hyperplexed

biomarkers, imaging based on multiple imaging modalities (e.g., transmitted light, fluorescence, and mass spectrometry [Giesen et al., 2014]). Basic image

processing and basic image quantitation is then followed by data normalization in preparation for applying the analytical platform. The hyperplexed imaging

process can be initiatedwith a limited set of biomarkers fromwhich LEAPHbuilds a data-driven, computationally unbiased phenotypic hierarchy of cell types, cell

states capturing a phenotypic continuum, and their spatial configurations. LEAPH in combination with PMI discovers outcome-specificmicrodomains composed

of spatially configured functional phenotypes. LEAPH combined with microdomain-specific network biology provides mechanistic insights into disease biology.

This analysis will further suggest outcome-specific new pathways, new cellular phenotypes, and additional biomarkers which can be optimally tested through

iterative probing of the same microdomains on non-destructive imaging platforms (Giesen et al., 2014; Goltsev et al., 2018; Lin et al, 2016, 2018; Vickovic et al.,

2019).
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spatial regularization (Figure S4B) and therefore further optimiza-

tion of this step will decrease the total time of LEAPH.

The input criteria for LEAPH are single-cell biomarker data

vectors with corresponding spatial information per sample.

Other sources for spatial multiparameter cellular and subcellular

imaging data include transmitted light (H&E and IHC), fluores-

cence, immunofluorescence, live cell biomarkers, mass spec-

trometry, electron microscopy, etc. Also, we have demonstrated

a non-spatial version of LEAPH in Figure S4C that can be applied

to non-spatial data-generation methods such as scRNA-seq. As

future work, we will extend LEAPH to analyze spatial transcrip-

tomics data, as this technology is rapidly evolving with the goal

of capturing single-cell spatial transcriptomic-wide information

(Burgess, 2019; Nature Methods, 2021).

To suggest its potential for broad utility, we also applied

LEAPH to a breast cancer IMC dataset (Jackson et al., 2020).

LEAPH derives 35 FPs with functional properties of tumor cells,

CSCs, epithelial mixed cells, tumor associated stromal cells,

T cells, CAFs, endothelial cells, immune mixed cells, macro-

phages, and stromal mixed cells (Figure S5). Interestingly, there

is a large population of non-specialized cells with shared owner-

ship probability between FP31 and FP34, a tumor cell and CSC

population that would be worth investigating in the future. We

found a strong correlation between the LEAPH FPs, and the 71

cell clusters previously published and derived from PhenoGraph

(Figure S5E) (Jackson et al., 2020; Levine et al., 2015). Although

71 cell clusters were dissected with PhenoGraph, the previous

study chose to further group these clusters to form 27 metaclus-

ters for downstream analysis and biological interpretation (Jack-

son et al., 2020). In Figures S5B and S5C, we present the inter-

preted biological functionalities of the phenotypes that LEAPH

generates.

Beyond LEAPH, we have also laid out a framework utilizing the

LEAPH-derived FPs to investigate the systems biology of TMEs

in relation to disease progression. We use PMI to compute the

pairwise relative likelihood of spatial co-occurrence between

FPs and subsequently from microdomains based on the recur-

rence-specific FP pairs. We hypothesize that capturing the

higher-order spatial relationships between groups of pheno-

types might provide additional information on the spatial config-

urations of the microdomains. Furthermore, there are many

graphical models (Barber and Drton, 2015; Foygel and Drton,

2010; Meinshausen and B€uhlmann, 2006) that could also be

used in the microdomain-specific network biology analyses.

To further investigate our findings, we can exploit the non-

destructive property of cyclical imaging platforms (Giesen

et al., 2014; Goltsev et al., 2018; Lin et al, 2016, 2018; Vickovic

et al., 2019), which allow iterative analysis of additional bio-

markers on the same tissue sample to test mechanistic hypoth-

eses, and identify novel biomarkers and optimal therapeutic

strategies (see below and Figure 5). Given the impact our

computational framework can have, in the future, it will be imper-

ative to apply our methods on a larger cohort of CRC data to test

the universality of our discovered recurrence-associated micro-

domains and microdomain-specific biomarker networks.

Here, we denoted the leaves of the tree generated by LEAPH

as our FPs. However, information at any level of the LEAPH hier-

archy can be used for the spatial analysis described in this paper.
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In fact, in our previous work, we have used only the first level of

the LEAPH hierarchy (epithelial and stromal domains) to suc-

cessfully predict the risk of 5-year recurrence in CRC (Uttam

et al., 2020). Indeed, the same analysis can be repeated by using

the entire library of FPs derived from LEAPH. We expect the pre-

dictive analysis will be further enhanced with the additional phe-

notypes and the derived microdomains. In addition, given the

impact our computational framework can have, in the future, it

will be imperative to apply our methods on a larger cohort of

CRC data to test the universality of our discovered recurrence-

associated microdomains and microdomain-specific biomarker

networks. On the basis of the statistical robustness of our

approach and external experimental validation of our results

found in the literature, we predict that we will find similar micro-

domains presented here in larger CRC datasets.

The selection of biomarkers is a key factor in determining the

resulting phenotypes that will emerge. We demonstrated the ex-

istence of an optimal set of biomarkers capable of reproducing

the FPs derived from LEAPH with the entire biomarker set. Our

virtual simulation provides evidence for performing iterative cy-

cles of imaging and computational analysis with an optimal

biomarker set to fully exploit the capabilities of LEAPH in combi-

nation with a non-destructive multi- to hyperplexed imaging

platform.

LEAPH bridges an important knowledge gap in the analytical

frameworks that we previously proposed (Spagnolo et al.,

2016; Uttam et al., 2020). LEAPH builds a statistical framework

for the application of PMI (Spagnolo et al., 2016) in the

unsupervised discovery of data-driven microdomains. With this

advancement, we can fully exploit the spatial network biology-

based analysis from our previous work (Uttam et al., 2020) to

provide mechanistic insights into disease biology, such as the

generation of outcome-specific newpathways, new cellular phe-

notypes, and iterative experimental testing of additional bio-

markers of the same microdomains (Figure 5). We can generate

a hypothesis for future experimental and computational studies

to further investigate the signaling and crosstalk of this immuno-

suppressive program across the TME landscape to understand

the biology of CRC recurrence and possible therapeutic strate-

gies. Systematically deciphering the microdomain-specific

network biology will allow us to not only a priori predict recur-

rence and its aggressiveness resulting in personalized patient

surveillance but also potentially select optimal therapeutic inter-

ventions by identifying dominant risk-associated microdomains

(Figure 5). This framework forms the basis of an explainable AI

platform (Tosun et al., 2020) with applications probing and

modulating the tumor environment, including prognostics,

diagnostics, patient stratification for clinical trials, drug target

identification, patient-specific therapeutic strategies, including

immunotherapy, as well as animal toxicology studies (Figure 5).

Limitations of study
The 13 FPs reported here might not be comprehensive because

of the choice made in selecting the panel of biomarkers to label

and image. The number of FPs is also tied to the parameter

choice (e.g., using a minimum cell fraction of 1%). Lowering

the stopping criterion parameters for the recursive procedure

would result in a more fine-grained decomposition of the cells.
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This could show subtle differences in functionality and this

option should be explored in future work. Our goal in this study

is to characterize outcome-associated FPs and microdomains.

To that end, the downstream analysis of relating the FPs to the

outcome data can be done at any level of the recursive hierarchy,

including if the hierarchy were to be expanded beyond the

current 13 phenotypes.
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METHOD DETAILS

Hyperplexed CRC data
The data for this study consists of 747 colorectal carcinoma (CRC) tissue samples hyperplexed using cell DIVE with 56 biomarkers

measured in protein expressions plus DAPI nuclear counterstain. Cell Dive (GE Life Sciences, Issaquah, WA) (Gerdes et al, 2013,

2014; Graf and Zavodszky, 2017; McKinley et al., 2017; Nelson et al., 2013; Santamaria-Pang et al., 2017; Uttam et al., 2020) involves

non-destructive cyclical immunofluorescence labeling with two or three antibodies labeled with distinct fluorescent probes, imaging,

and subsequent quenching of the fluorescence. This process is repeated to capture all the required antibodies (biomarkers). The data

consists of image stacks taken at each region of interest and overall image stack consists of several images for each of several im-

aging rounds. Each round includes a nuclear (DAPI) image that is used as a reference for registering all the images from all the rounds.

Quantitation of images in each round includes the fluorescence intensity of eachmeasured biomarker. Images are also acquired after

quenching rounds for the purpose of autofluorescence removal (Gerdes et al., 2013). Processing of Cell DIVE images includes correc-

tion for uneven illumination across the field of view, removal of autofluorescence, registration, and automated quality control (QC)

detection of several categories of defects, including failed registration, blurred or saturated images, and other imaging issues.

The images and data undergo a series of tissue and cell quality checks, log2 transformation and normalization steps. To integrate

data from batch processing each biomarker is normalized to a control median. Validation of this process shows robustness and pres-

ervation of biomarker stability and biological integrity (Gerdes et al, 2013, 2014; Graf and Zavodszky, 2017; McKinley et al., 2017;

Nelson et al., 2013; Santamaria-Pang et al., 2017; Uttam et al., 2020). Images are acquired in TIFF format, while image metadata

is captured in files having a simple structure that captures the provenance of which images were derived fromwhich slides and char-

acteristics of the acquisition (Gerdes et al, 2013, 2014; Graf and Zavodszky, 2017; McKinley et al., 2017; Nelson et al., 2013; Santa-

maria-Pang et al., 2017; Uttam et al., 2020). The biomarkers chosen are protein markers for specific cell lineages, oncogenes, tumor

suppressors, and post-translational protein modifications indicative of cellular activation states (Table S1). The data also includes

corresponding clinical information including the histological tumor grade, cancer stage, gender, age, and follow up monitoring for

10 years (Table S2).
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Data pre-processing
Cell quantitation

Cellular segmentation is done using a collection of structural biomarkers: NaKATPase (cell membrane, border), S6 (cytoplasm), and

DAPI (nucleus) (Figure S1A). Protein expression and standard deviation were quantified by the median biomarker intensity value

within each cell mask and transformed to the log2 scale (Gerdes et al., 2013). Cells are filtered using individual QC scores generated

for each cell (scores less than 0.7-0.8 will not be included indicating inaccurate registration, misalignment, or tissue loss) and based

on number of pixels per segmented subcellular compartment.

Patient selection

For this study, based on the clinical data, we limit the patient dataset to deceased patients with recurrence within 5 years (post-sur-

gical resection) and alive patients with no evidence of recurrence within 5 years (post-surgical resection). Further, we eliminate tissue

samples with less than a threshold of 1000 cells to limit the potential adverse effects of hyperplex imaging (i.e. damaged, folded, or

lost tissue). This cell threshold is computed based on the 20th percentile of number of cells per tissue sample shown in Figure S1B.

The final dataset used is composed of 213 TMA spots (Table S2). The alternative strategies could have been to filter out cells within

the damaged areas of the TMA’s by examining the nuclear-to-cytosolic ratio of structural biomarkers. We chose to use the cell

threshold method to preserve the unsupervised nature of LEAPH. To demonstrate properties of patients at the extrema’s, we further

group patients with no evidence of disease beyond 8 years (NED-8yrs) and evidence of recurrence within 3 years (REC-3yrs)

(Table S2).

Biomarker selection and distributions

We removed biomarkers showing batch effects resulting in a selection of 51 biomarkers for this analysis. The distribution of each

biomarker (log2 scale) across all cells in the patient cohort is shown in Figure S1D. The Kurtosis values measures the skewness

of the distribution. Comparing the kurtosis values of the biomarker distributions to the kurtosis of a univariate normal distribution

(kurtosis = 3), many but not all these distributions can be considered to have a Gaussian shape.

LEAPH construction
We will describe the hyperplexed dataset in a high-dimensional space, where each cell x!ðp31Þ is described by a p dimensional

vector of biomarker expressions quantitated appropriately. Further, we assume that the hyperplexed dataset has an intrinsic low-

dimensional representation. Wewill use amixture of factor analyzers described by low-dimensional factor loadings (L ðp 3 kÞ), latent
variables ( z! ðk 3 1Þ), mean vector ( m! ðp 3 1Þ), and noise term ( n! ðp 3 1Þ): x! = L z! + m! + n!, where p is the number of biomarkers

and k is the low-dimension latent space (Ghahramani and Hinton, 1997). The latent factors, z!, are generated from zero-mean, unit-

variance Normal distribution N(0,I), and the noise term, n! is sampled from N(0,J). I is the unit variance and J is assumed to be a

diagonal matrix. With this construction, x! is distributed with zero mean and covariance LLT +J (Ghahramani and Hinton, 1997).

Probabilistic clustering

Typically, cellular phenotyping methods are constructed under the assumption that each cell belongs to one and only one cluster

(hard clustering) leaving no room to identify specific cells that may belong to more than one phenotype due to an existing phenotypic

continuum. Using a probabilistic clustering approach, with aMixture of Factor Analyzers (MFA), wemodel the cells asM components

(clusters) with the parameters ðfpj; m
!

j;LjgMj = 1
; JÞ where pj is the component weight: pð x!Þ = PM

j = 1

Nð x!�� m!j; LjL
T
j + JÞ. We chose a

two-dimensional latent space for each component in the MFA model, as we observed this is enough to capture the input variance

(Figure S1C). The expectation-minimization (EM) algorithm is utilized to estimate the model parameters (Ghahramani and Hinton,

1997). The EM algorithm is initialized with a random set of parameters and the EM algorithm is not guaranteed to converge to a glob-

ally optimal solution. To account for this and ensure stability, we perform a hundred different EM optimizations, each initialized

randomly. Each optimization yields an MFA model with a set of model parameters. We compute the biomarker ranking for each

set of model parameters (see discriminative biomarkers order section) and aggregate all biomarker rankings to compute their

mean ranking. The model with a biomarker ranking closest (Euclidean distance) to the mean ranking is selected as the consensus

model and deemed to provide an optimal subspace representation (Figure S2A). The MFA model results in probabilistic clustering

probabilities (ownership probabilities) – each cell, xc, holds a unique probability of belonging to each cluster j, denoted as Ucj.

Spatial regularization

The probabilistic clustering is agnostic to the spatial complexity of the TME, a key component driving ITH. Based on properties of

spatial ITH and the spatial tissue architecture of a tumor, we expect neighborhoods of cells to be spatially coherent (e.g.,

epithelial/tumor cells to be surrounded by, or spatially proximal to, other epithelial/tumor cells, but making allowance for the presence

of tumor-infiltrating lymphocytes and other stromal cells for example). To promote specialization in cells, we add a spatial

regularization component to optimize the ownership probabilities of non-specialized cells. The spatial regularization

step optimizes the objective function which consists of two terms: ownership confidence and spatial coherence given by:

min
U

 
�PN

i =1

PM
j = 1

Ucj log 2ðUcjÞ + l
P
ðm;nÞ

wmnjjUm � Unjj2
!
. The first term minimizes the entropy of the ownership probabilities promoting

specialization in cells. The second term promotes spatial coherence where wmn is the weight between cell m and cell n and is
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computed as the reciprocal of the distance between two cells:wmn = 1
distðcellm ; cellnÞ. We use a distance threshold (100 pixels at 0.5 mm/

pixel) to eliminate an influence between cells that are too far apart to communicate (Francis and Palsson, 1997).

The objective function is optimized using Alternating DirectionsMethod of Multipliers (ADMM) (Hallac et al., 2015). We assume that

the probability ownership confidence (term 1) and spatial coherence (term 2) should hold equal weight and therefore compute the

tuning parameter, l, to scale term 2 to the range of term 1: l=
Nopt3maxEntropyP

fm;ngwmn
where Nopt is the number of cells being optimized

and maxEntropy is the maximum value of the entropy function (=1). Relaxing the assumption that spatial coherence and ownership

confidence should hold equal weight in the objective function would lead to a larger parameter space. A higher weight for spatial

coherence results in homogeneous neighborhoods and a larger set of non-specialized cells. On the contrary, a larger weight for

ownership confidence results in the abolishment of all non-specialized cells. We have found stable and consistent results when

the tuning parameter represents an equal weighting. Cells can only have neighbors within the same tissue sample and therefore

to increase computational speed and efficiency, spatial regularization is performed on each tissue sample independently.

Recursive decomposition

We make two key observations about the hyperplexed data: 1) a varying spread of biomarker values likely due to the individual

biomarker response sensitivity (Figure S1D) and 2) existence of dominant cellular phenotypes (e.g., epithelial and stromal cells)

and nested cell subtypes (e.g., immune, cancer stem cells) derived from a cellular phenotypic continuum. To account for these

observations and automate the process of cellular phenotype discovery, we propose a recursive probabilistic approach where

each step attempts to dissect the most dominant clusters with M = 2 components.

At each recursive step, the probabilistic clustering step utilizes a low-dimensional latent space MFA. Subsequently, within each

recursive step, spatial regularization optimizes the resulting per-cell ownership probabilities to filter false-positive non-specialized

cells by promoting ownership confidence and spatial coherence. The resulting parameters (ownership probabilities, Uj, mean vector,

m!j, factor loadings, Lj) for each cluster, j, are passed to the next recursive step to decompose each cluster into further sub-clusters.

This process is continued until an attempted cluster split invalidates the stopping criteria based on the angle between the mean vec-

tor and factor loading space.

Discriminative biomarker order

Each LEAPH split results in two clusters with high dimensional mean vectors ð m!1; m!2Þ. To determine the discriminative ordering of

the biomarkers, we compute and sort the proportional difference for each biomarker j: Dj =
�� m!1j � m!2j

�� �maxð m!1j; m!2jÞ. The abso-

lute difference of themean vectors may bias the selection of biomarkers with high biomarker value ranges and therefore, we opt for a

proportional difference to place the biomarkers on an even level for comparison.

Analyzing non-specialized cell states

To investigate the likelihood of non-specialized cells holding ownership probabilities shared between an FP-pair, i and j, we compute

the inner product between the ownership probability vectors, <Ui; Uj>. The inner product determines the total sum of shared

ownership probability between the FP-pair, i and j. Generally, we perform this computation as UTU and visualize in Figure 3B

(and Figure S5B).

FP-specific biomarker positive (+) signatures

We follow the approach of Schurch et al. in using cellEngine (www.cellengine.com) to validate LEAPH (Sch€urch et al., 2020).We use a

threshold for each biomarker equal to its mean to determine biomarker-positive (+) cells. With this threshold in place for every

biomarker, each cell is now represented as a vector, b
! ðp 3 1Þ, with values 1 or 0 if the biomarker expression is positive or negative,

respectively. To summarize each FP with a biomarker-positive (+) signature, we compute a biomarker-positive (+) fraction for each

FP, j, biomarker, k, pair defined as: Bjk =

PN

c= 1
Ucj b

!
ckPN

c= 1
b
!

ck

.

Biomarker selection virtual simulation

For comparison, we assume the LEAPH derived FP’s is the ground truth. Based on the rank-ordered biomarkers from each LEAPH

recursion step, we re-run LEAPH with the first 2, 4, ., 20 biomarkers at the first and second level of the hierarchy (Table S5).

Assigning each cell to one FP based on the highest ownership probability (cell-label), we compute the accuracy of the cell-labels

derived from each sub-set of biomarkers to the assumed ground truth (Figure S4A). This virtual simulation demonstrates the

reproducibility and capabilities to integrate LEAPH into an integrated iterative imaging and computational platform.

Discovery of recurrence-associated microdomains
Step 1: patient selection

To study the differences between patients at each extremum and balance the NED/REC cohorts, we prune the patient cohort further

based on the time to recurrence. We consider the two groups, NED-8yrs (N = 45) and REC-3yrs (N = 46). See Table S2 for patient

statistics.

Step 2: spatial network of neighboring cells

In each tissue sample, we build a spatial network where each node is a cell and the edges connect cells, saym and n, to each other

with a weightwmn = 1 if their spatial distance dmn is within a threshold (100 pixels/50 mm, which is the same threshold used in LEAPH
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spatial regularization), or wmn = 0 otherwise. To remove possible artifacts, we prune each network to include only cells within the

largest connected component.

Step 3: PMI for spatial co-occurrence of FPs

Pairwise association statistics, specifically pointwise mutual information (PMI), identifies microdomains consisting of one, two, or

groups of phenotypes which spatially co-occur more frequently than a given background distribution. PMI maps can characterize

associations at the cohort, patient, and tissue sample level and can describe both the local and global spatial heterogeneity scenarios

that cannot be captured by well-known methods such as quadratic entropy (Leinster and Cobbold, 2012).

Each cell, c, holds an ownership probability vector over the M FP’s, U
!

c ðM 3 1), such that
PM
j = 1

U
!

cj = 1. The pointwise mutual

information between two phenotypes, (fi,fj), for a given network or network set, s, is defined as:

PMIsðfi; fjÞ = log 2

 
p
�
fsi ; f

s
j

�
p
�
f ti
�
p
�
f tj

�!

where pðfsi Þ is the probability of phenotype i occurring in a network set s and pðf ti Þ is the background probability distribution of

phenotype i (this can be an ensemble of networks or individual networks, see below). For a single patient, the joint probability is

computed as:

p
�
fsi ; f

s
j

�
=
1

z

 X
ðm;nÞ˛F

wmn

�
U
!

mfi U
!

mfj + U
!

mfj U
!

nfi

�!

where f is the set of edges, wmn is the edge weight between cells m and n, and Z is the normalization factor given by:

Z =
XM
i =1

XM
j = i

 X
ðm;nÞ˛F

wmn

�
U
!

mfi U
!

nfj + U
!

mfj U
!

nfi

�!

PMI computation results in values with direct implication to spatial co-occurrence. The PMI values are either negative implicating

that a phenotype-pair spatially co-occurs less than the background distribution, positive implicating that a phenotype-pair spatially

co-occurs more than the background distribution, or zero implicating that a phenotype-pair spatially co-occurs the same as the

background distribution.

Step 3a: Select a background distribution - We choose to use a random background distribution to depict the probability each

FP-pair spatially co-occurs more, less, or the same as random. To construct the random distribution, we set the probability of

each FP to the probability of each FP over all cells: pðf ti Þ = 1
N

PN
c= 1

Uci, where N is the total number of cells.

Step 3b: Perform Jackknife estimation - A jackknife estimation is commonly used to remove bias whenmeasuring the dependence

between two random variables (e.g., Pearson’s correlation coefficient, mutual information) (Zeng et al., 2018). For a given estimator,

PMI: Tn =TðX1;.; XnÞ for n samples. Let Tð�iÞ denote the statistic where the i-th patient is removed. The jackknife bias estimate is

defined as: bjack = ðn � 1ÞðTn � TnÞ, where Tn = 1
n

P
i

Tð�iÞ. The bias-corrected estimator is

Tjack = Tn � bjack = ðnÞTn �
�
n� 1

n

�X
i

Tð�iÞ

The jackknife estimate of standard error is: csejack =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1
n

P
i

 
Tð�iÞ � 1

n

P
i

Tð�iÞ

!2
vuut .

Step 3c: Filter unstable PMI values -Weobserved instability in the PMI estimates (including high jackknife estimated standard error)

for any given FP-pair, (fi; fj) when the number of cells involved in the pairing is low. To remove this bias, we compute the effective

number of cells (total ownership probability) in the FP-pair for a patient, p, as the summation of ownership probabilities, Np
ðfi ; fjÞ,

over all cells in the network: Np
ðfi ; fjÞ =

PNp

c
U
!

cfi + U
!

cfj . Aggregating all patients, we use the 25th percentile as a cutoff value and remove

all patients with Np
ðfi ; fjÞ< cutoff. We find that removing these patients also removes the patients with a relatively high standard error.

Step 4: identify significant FP-pairs

For each FP-pair, (fi, fj), we aggregate the PMI values to form two distributions (NED-8yrs, REC-3yrs) (Figure S3D). We perform a per-

mutation test (10,000 permutations) using a test statistic, t, to evaluate the absolute difference between NED-8yrs and REC-3yrs PMI

distribution means (Table S3) (Stanberry, 2013). FP-pairs are identified as being significant based on the resulting permutation test p

value (pt < 0.05) (Figure 4B). We found the significant FP-pairs form two microdomains: uD1 — an interconnecting network between

FP1, FP5, FP6, FP7, FP9, FP12, FP13, uD2 — a pairwise interaction between FP2, FP4.
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Visualizing cells contributing to eachmicrodomain- Eachmicrodomain consists of a set of FP-pairs (e.g., uD2 = FP2:FP4). Each cell

and its neighbor within 100 pixels (50 mm) contribute to the relevant uDwith a probability that is determined by the joint product of their

ownership probabilities. For example, for FP-pair FP2:FP4, we sum the product of probabilities of the reference cell, c, and its

neighbor d belonging to FP2 and FP4 respectively, and vice versa to determine the overall contribution of the link connecting c

and d to the microdomain with an FP-pair FP2:FP4.

Step 5: spatial network biology analysis

For each microdomain, we aim to identify a biomarker network representation for the NED-8yrs and REC-3yrs patient groups. Within

a single microdomain (ffigi˛uD) and each patient cohort, we gather all cells, c, where
P

ffigi˛uD
Uci>0 and compute the partial correlation

between each biomarker-pair, controlling for the remaining confounding biomarkers (Uttam et al., 2020). First, using the biomarker

data, X (N3p), and weight vector, w	! ðp 3 1Þ, where the weight for each cell, c, is the normalized sum of the ownership probabilities

of each FP in the microdomain (w!c =

P
ffigi˛uD

UciPN

c=1

P
ffigi˛uD

Uci

), we compute the weighted covariance matrix, C (p3p) defined as: C = bXT
W bX

where bX =X � w!T
X andW denotes the weights as a diagonal matrix (Pozzi et al., 2012). Second, we invert the covariance matrix to

obtain the precision matrix, F = C�1. Third, we compute the partial correlation coefficient between each biomarker pair, rij, through

normalization: rij = � Fijffiffiffiffiffiffiffiffi
FiiFjj

p . The partial correlation coefficients range from �1 to 1 representing the true correlation between each

biomarker pair when all other confounding factors (other biomarkers) are removed (Epskamp and Fried, 2018). For the sake of

simplicity, we chose to pool cells across the two patient outcome cohorts: total number of cells in NED-8yrs cohort = 89,963 and

REC-3yrs cohort = 89,596 (Table S2). However, one could also construct patient-specific networks, and based on the number of

cells, an additional step of matrix regularization may have to be incorporated.

To compare the partial correlation networks between the cohorts, NED-8yrs (rNED) and REC-3yrs (rREC), we use differential con-

nectivity analysis with a permutation test. We define a symmetric differential connectivity matrix, D0:p3p, where each entry, (i,j), rep-

resents the differential connectivity between a biomarker pair: D0ði; jÞ =
���rNEDij � rRECij

���. To test the significance of the differential, we

use a permutation test (with B = 10,000 permutations). For each permutation iteration, the patients are randomly shuffled across the

NED-8yrs and REC-3yrs cohort and sampled to mirror the same number of tissue samples as the original NED-8yrs and REC-3yrs

cohorts. Each permutation, k, results in a differential connectivity matrix of the permuted data, Dk. The significance value (p value) for

a specific biomarker-pair (i,j) is computed as b+ 1
B+ 1 where b =

PB
k = 1

IðD0ði; jÞ%Dkði; jÞÞ. We define the biomarker-pairs with a differential

connectivity score in the top 99th percentile and p value below 0.05 as significant (Table S4).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details and data analysis methods used for this study are cited in the appropriate sections in the STAR Methods.
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