

Abstract

Background: It is now well understood that complex spatial relationships, the emergence of intermediate cell types and states, as well as communications between cells in tissues are critical components of disease progression and must be major drivers for solutions in precision pathology [1, 2, 3].

Problem: The current computational analyses of multi to hyperplexed fluorescence and/or mass spectrometry image datasets from patient pathology samples are not powerful enough to extract the maximum amount of information or to create the detailed knowledge that is required to advance precision pathology.

Solution: SpIntellx meets this challenge by harnessing the computational power of proprietary, unbiased spatial analytics and explainable artificial intelligence (xAI) to extract information and to create knowledge from patient primary disease pathology samples imaged on any of the existing fluorescence and/or mass spectrometry imaging platforms.

Results: In this work, we showcase results from applying TumorMapr on hyperplexed immunofluorescence dataset on colorectal cancer and hyperplexed imaging mass cytometry dataset on triple negative breast cancer discovering functional cell types (e.g., transitional cells) highly predictive of disease progression and response to therapy, and for identifying microdomain-specific network biology driving recurrence.

Power Precision Pathology: Going Beyond Computational Pathology by Leveraging Unbiased Spatial Analytics and Explainable AI

- Next-generation spatial analytics that harnesses parametric models to capture histological structures and statistical spatial relationships between all biomarkers to create unbiased analyses, not biased "spatial measurements" with deep learning AI Explainability
- Truly explainable AI that explains in pathologist's language the decisions made by algorithms, not black-box deep learning AI with biased heatmaps as explanations

TumorMapr

An unbiased spatial analytics and explainable AI platform for creating knowledge from multi (<9 biomarkers) to hyperplexed (>9 biomarkers) fluorescence and/or mass spectrometry image datasets, from any platform.

TumorMapr[™]: **Unbiased Spatial Analytics And Explainable AI (xAI) Powers Precision Pathology**

Samantha A. Panakkal¹, Brian Falkenstein¹, Bruce Campbell¹, Michael J. Becich^{4,5}, Jeff L. Fine⁵, D. Lansing Taylor^{2,3}, Akif Burak Tosun¹, Filippo Pullara¹, S. Chakra Chennubhotla^{1,2,3} ¹SpIntellx, Inc., 100 S Jackson Ave, Pittsburgh, PA 15202 (info@spintellx.com) ²Dept. of Computational and Systems Biology; ³University of Pittsburgh Drug Discovery Institute; ⁴Dept. of Biomedical Informatics; ⁵Dept. of Pathology, University of Pittsburgh, PA 15261

Functional Cell Phenotypes (FP)

Tumor Coll Tupos	FP11	FP16	FP17
Tumor Cen Types	FP18	FP26	
	FP5	FP6	FP7
Epithelial Cell Types	FP8	FP9	FP10
	FP12	FP13	
Immune Cells with Tumor	FP14	FP15	FP19
Characteristics	FP2	FP3	FP4
Immune Cells Type	FP1		
Fibroblast	FP20		
Macrophages	FP21	FP24	
T-cells	FP22		
Leukocytes	FP23		
B-cells	FP25		

pointwise mutual information [8] analysis

REC (top row, recurrence within 2 years); NED (bottom row, no evidence of disease in 8 years)

Results

Poster #454

Discussion

TumorMapr Software-as-a-Service (SaaS)

• Why Unbiased Spatial Analytics? [4,5]

- Identify functionally relevant transition cell states and fusion cell types
- **Discover** heterogeneous microdomains associated with disease progression and outcomes
- **Reveal** pathway interactions, signaling networks, potential molecular targets and drugs with microdomain-specific spatial systems pathology
- Why Explainable AI? [9]
- **Explain** why a particular recommendation is made in a clinician understandable language
- **Build** trust and confidence in decisions recommended by the algorithms
- **Deliver** information and actionable knowledge with xAI guides to pathologists and disease specific clinicians who remain in full control to make the final decisions

Colorectal Carcinoma Study

- TumorMapr applied to CRC primary tumor tissue samples automatically identified 13 unbiased FP's and two corresponding recurrence-associated microdomains [4,5].
- Microdomain-specific partial correlation analysis of biomarker pairs shows a strikingly significant difference between the two patient cohorts. We find that within the evolving tumor microenvironment, the molecular signaling networks within each microdomain undergo a <u>regulatory switch</u> to confer a recurrence phenotype supported by cancer stem cell maintenance and immunosuppression.
- Any level of the FP hierarchy can be used for the spatial analysis of a tumor sample. We previously reported the use of the first level of this hierarchy (epithelial and stromal domains) to successfully predict the risk of 5-year recurrence in CRC with AUC 0.89 [4]. With further spatial dissection of the recurrenceassociated microdomains, we improved the prognostic accuracy to an AUC 0.93 [5].

Triple Negative Breast Cancer Study

- TumorMapr applied to triple negative breast cancer tissue samples generated by IMC [7] automatically identified 26 unbiased FP's and two corresponding recurrence-associated microdomains [4,5].
- The 26 unbiased FP's have heterogenous properties, with the density of FP-6 being a prognostic indicator for stratifying triple negative patients.
- Spatial analysis of the triple negative patient cohort results in two recurrence-associated microdomains containing tumor promoting and suppressing properties.

References

- Vitale, I., et al., Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nature Medicine, 2021: p. 1-13.
- Azizi, E., et al., Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell, 2018. **174**(5): p. 1293-1308. e36.
- Smith, E.A. and H.C. Hodges, The Spatial and Genomic Hierarchy of Tumor Ecosystems Revealed by Single-Cell Technologies. Trends in cancer, 2019.
- 4. Uttam, S., et al., Spatial domain analysis predicts risk of colorectal cancer recurrence and infers associated tumor microenvironment networks. Nature communications, 2020. 11(1): p. 1-14.
- Furman SA, Stern AM, Uttam S, Taylor DL, Pullara F, Chennubhotla SC. In situ functional cell phenotyping reveals microdomain networks in colorectal cancer recurrence. Cell reports methods. 2021 Sep 27;1(5):100072.
- . Gerdes, M.J., et al., Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc Natl Acad Sci U S A, 2013. 110(29): p. 11982-7.
- 7. Jackson, Hartland W., et al. "The single-cell pathology landscape of breast cancer." Nature 578.7796 (2020): 615-620.
- 8. Spagnolo, D.M., et al., Pointwise mutual information quantifies intratumor heterogeneity in tissue sections labeled with multiple fluorescent biomarkers. J Pathol Inform, 2016. 7: p. 47.
- 9. Tosun, A.B., et al., Explainable AI (xAI) for Anatomic Pathology. Advances in Anatomic Pathology, 2020. 27(4): p. 241-250.

Acknowledgements

- This work was supported in part by the grants NIH/NCI U01CA204836 (SCC, DLT); NIH/NIBIB 5T32EB009403 and 1NIH/NCI 1F31CA254332 (SF); NIH P30CA047904, and PA DHS 4100054875 (DLT); NIH/NHGRI U54HG008540, and UPMC Center for Commercial Applications of Healthcare Data 711077 (SCC).
- The computational and systems pathology intellectual property (US patent application 62/847,622) from this work is owned by the University of Pittsburgh and is exclusively licensed to SpIntellx Inc., Pittsburgh, PA (<u>http://www.spintellx.com</u>).