ABSTRACT

Spatial proteomics with hyperplexed immunofluorescence imaging predicts risk of colorectal cancer recurrence

Motivation: Spatial context of the tumor microenvironment plays a CLONAL ITH

critical role in disease progression, recurrence and response to
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therapy. In this work, our goal is to harness the spatial interactions
for cancer prognosis.

Introduction: Colorectal cancer (CRC) is the third leading cause of
cancer related deaths in United States with recurrence after
resection-with-a-curative-intent being frequently implicated in
these deaths. The basis for CRC recurrence is multifactorial

including MSI status, lymph nodes etc., and may involve
dysregulation of heterocellular signaling among tumor cells and NGN-CLONAL TTH
their microenvironment.
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Based on hyperplexed immunofluorescence imaging with Cell DIVE™ (GE Healthcare,
Issaquah, WA) (Fig. 1) [1], single cell analysis and novel computational analyses, we have
developed a recurrence-risk prediction method that samples these signaling networks within
the epithelial and stromal domains of the tumor microenvironment and provides improved
performance over current state-of-the-art recurrence-risk prediction assays.

Data: In the retrospective study presented here, we used 56 hyperplexed
immunofluorescence biomarkers associated with canonical oncogenic pathways, metabolism,
immune response and other colon cancer hallmarks to spatially profile resected tissue samples
from 432 chemo-naive CRC patients.

Results: Using epithelial- and stromal-domain expression and cellular co-expression diversity
of the biomarkers, we predicted the risk of CRC recurrence with a concordance index of 0.91.
We also generated training and validation sets from the CRC patient cohort and
demonstrated that the area under the curve (AUC) of the prediction receiver operating
characteristic (ROC) was 0.885. We utilized stratified bootstrapping to show that the AUC was
stable with a standard deviation of 0.01. Significantly, the penalized model selection used
within our method allowed us to infer epithelial and stromal-domain protein networks that are
specific to the risk-of-recurrence. Despite the limited sampling that is intrinsic to tissue
microarrays, we were able to capture immune cell infiltration and the differential modulation
of these outcome specific networks.

Conclusions: Our CRC recurrence-risk prediction method exploits the spatial proteomics
computational and systems pathology platform using hyperplexed immunofluorescence
imaging and single cell analysis. This study demonstrates the potential of spatial proteomics
to not only reveal the underlying systems pathophysiology, but also predict risk of CRC
recurrence. Inferring outcome- and domain-specific CRC networks will enable biomarkers
mechanistically linked to disease progression to be determined and their causality
corroborated. In turn, this knowledge can potentially be used to inform optimal therapeutic

strategies for individual patients.
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Figure 1: Cell DIVE[1] sample
analysis workflow. (A) In the
laboratory, background
autofluorescence (AF) tissue
images are acquired before
subsequent application of
fluorescent dye-conjugated primary
antibodies. Stained images are
then acquired, followed by dye
inactivation and restaining with new
directly conjugated antibodies.
New images are acquired, and the
cycle is repeated until all target
antigens are exhausted. (B) Stained
images are registered, background
AF is removed from each stained
image, and images are segmented
into epithelial and stromal regions.
(C) Data analysis can consist of a
variety of statistical and visual
explorations.
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and infers recurrence-specific network biology
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Figure 2. (Top) Spatial domain decomposition model with epithelial cells identified by E-cadherin staining, with individual cells
delineated by Na+K+ATPase cell membrane marker and DAPI based nuclear staining. (Middle) Intensity expressions and
Kendell rank correlations between biomarker pairs provide a very high-dimensional feature space for each tumor spot and

are in turn fed into a recurrence-guided learning model for feature selection. (Bottom) Features are tested for stability in their
contribution to recurrence prognosis at a 90% concordance threshold. The domain-specific features are finally combined into a
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Figure 3. Learning recurrence-guided and spatially informed prognostic test for CRC recurrence. (Left) ROC curves were
obtained by bootstrapping patient data set to generate 500 pairs of independent training and testing sets using stratified
sampling. Mean area under the curve (AUC) for the ROCs is 88.5% with a standard error of 0.1%. (Right-Top) Spatial

model of deconvolving tumor spots into epithelial, stromal and epithelial-stromal domains provides a significant performance
improvement over a control model without domain decomposition. (Right-Middle) Predicting the risk of recurrence in
individual patients from all Stages remains high with with mean AUC of bootstrapped ROC curves for the three stages
respectively being 82.1%, 89.4% and 88.6%. Standard error in these mean AUC values is 0.4%, 0.2%, and 0.2% respectively.
(Right-Bottom) Time-dependent AUC values of the bootstrapped ROC curves remains consistent and stable (5% contidence
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Figure 4. Identitying spatial-domain networks to discriminate patient cohorts with and without
evidence of disease recurrence with (Top) distance graphs where nodes are biomarkers and edge
weights quantify the information distance between the two cohorts. (Bottom) Spatial-domain
networks derived by thresholding information distances reveal the heterogeneous nature of cell
populations and signaling pathways. For example, the epithelial-stromal domain network reveals
the prognostic role of three dominant sub-networks associated with tumor-invading T lymphocytes,
disruption in DNA mismatch repair cellular process, and the role of cancer associated fibroblasts in
the desmoplastic microenvironment.
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Figure 5. Validation of spatial domain networks with systems biology. We used curated databases to
identity pathways enriched by biomarkers within each of the spatial domain networks. For illustration, we
show pathways enriched in a majority of — at least two of the three — spatial domains. Since their
identification is based on the spatial-domain networks we identitied as most significant for CRC
recurrence prognosis, these pathways play a differentially important role in prognosis of CRC recurrence.
Interestingly, these pathways reveal a close connection to the CRC consensus molecular subtypes (CMS).

FUTURE DIRECTIONS

Figure 6. The computational and systems pathology platform
developed here focuses on interrogating tumor microenvironments
with spatial analytics. An important goal for future work is to examine
how risk is spatially organized within tumor cores. The discovery of
high risk microdomains within tumor cores can potentially reveal space
specific risk signatures within tumor microenvironments that are
associated with disease progression and CRC metastasis.
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